2.1 二分分类

部署运行你感兴趣的模型镜像
  1. 本周学习神经网络编程的基础知识
  2. 构建神经网络,有些技巧是非常重要
    1. 神经网络的计算过程中,通常有一个正向的过程(正向传播步骤),接着会有一个反向步骤(反向传播步骤),
    2. 为什么神经网络的计算可以分为前向传播和反向传播两个分开的过程?本周课程通过使用logistic回归来阐述,以便于能够更好的理解,


  1. logistic回归是一个用于二分分类的算法
    1. 比如有一个二分分类问题的例子,
      1. 假如有一张图像作为输入是这样的,你想输出识别此图的标签,如果是猫,输出1,如果不是,则输出0
        1. 1235596-20170908220933929-1886243935.png
        2. 使用y来表示输出的结果标签,
    2. 来看一张图片在计算机当中是如何保存的,
      1. 计算机保存一张图片,要保存三个独立的矩阵,分别对应图中的红绿蓝三个颜色通道
        1. 1235596-20170908220934897-1613881332.png
      2. 如果输入图片是64X64像素的,就会有三个64X64的矩阵,分别对应图中的红绿蓝三种像素的亮度,为了表示方便,这里使用了三个小的矩阵,他们是5X4的,而不是64X64的
      3. 要把这些像素亮度值,放进一个特征向量当中,就要把这些像素值都提出来,放入一个特征向量X
      4. 为了把这些像素值提取出来放入特征向量,就要像下面这样定义一个特征向量X,以便表示这张图片,我们把所有这些像素值都提取出来,
      5. 使用nx来表示输入的特征向量x的维度
  2. 在二分类问题中,目标是训练出一个分类器,它以图片的特征向量X作为输入,预测出的结果标签y 是1还是0,也就是预测图片当中是否有猫,
  3. 一些符号约定
    1. 用一对(x,y)来表示一个单独的样本,x是一个nx维度的特征向量,标签的值为0或者1,训练集由m个训练样本组成,m代表训练样本的个数,




转载于:https://www.cnblogs.com/yangzsnews/p/7496628.html

您可能感兴趣的与本文相关的镜像

EmotiVoice

EmotiVoice

AI应用

EmotiVoice是由网易有道AI算法团队开源的一块国产TTS语音合成引擎,支持中英文双语,包含2000多种不同的音色,以及特色的情感合成功能,支持合成包含快乐、兴奋、悲伤、愤怒等广泛情感的语音。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值