很纯粹的转贴,来自http://www.byywee.com/page/M0/S219/219366.html,就是为了以后知道这么配置...

编辑器加载中...WMI远程访问问题解决方法 WMI 全称为:Microsoft Windows Management Instrumentation (WMI)  按微软的介绍大致如下:      WMI 是 Microsoft 主要的针对 Windows 的管理支持技术。在 WMI 之前,所有的 Windows 图形化管理工具都依赖于 Win32 应用程序编程接口(Application Programming Interfaces,APIs)来访问和管理 Windows 资源。在 WMI 之前,能够以编程方式访问 Windows 资源的惟一方法就是通过 Win32 API。这种情况使 Windows 系统管理员无法通过一种简便的方法利用常见的脚本语言来自动化常用的系统管理任务,因为大多数脚本语言都不能直接调用 Win32 API。通过提供一致的模型和框架,WMI 改变了这种情况 — 通过模型和框架,所有的 Windows 资源均被描述并公开给外界。最好的一点是,系统管理员可以使用 WMI 脚本库创建系统管理脚本,从而管理任何通过 WMI 公开的 Windows 资源!      通过WMI访问远程计算机需要注意几点: 1。首先确保使用的用户名和密码正确,且用户有管理员权限。用户的密码不能为空。 2。检查目标机上DCOM是否可用。 检查注册表中键值 HKLM\Software\Microsoft\OLE\EnableDCOM的键值设为Y 3。 检查WMI是否已经安装。 在运行窗口中输入 wbemtest。wbemtest是一个wmi的测试工具,可以远程连接计算机。用法:\\\root\cimv2,连接。此连接 等同于net use \\\C$ /u: 命令。如果目标加入了域,则在域服务器不可用的情况下会报“当前没有可用的登录服务器处理请求”的错误,此时局域网共享 也将失效。局域网访问通过NetBiOS或者一种直连的方式访问,所以确认端口135,139,或者445是否正常。 4。确保 WMI的权限设置正确。需要设置的有DCOM的访问权限。运行DCOMCNFG。在“组件服务”对话框中,依次展开“组件服务”、“计算机”,“我的电 脑”。在“我的电脑”右键属性对话框中,单击“COM 安全”选项卡。在“启动和激活权限”下,单击“编辑限制”。在“启动权限”对话框中,将你要访问的用户或组添加到“组或用户名称”列表中。在“启动权限” 对话框中,在“组或用户名称”框内选择您的用户和组。在“用户权限”下的“允许”栏中,选择“远程启动”,然后单击“确定”。 5。 如果访问的目标机运行的是Windows XP Pro 系统,需要确保远程登录方式不是来宾帐户的方式。方法如下:在本地安全设置中(可以在控制面板的管理工具中找到,或在运行框中输入命令 secpol.msc)。打开本地策略-〉安全选项,把 网络访问:本地帐户的共享和安全模式 中设置为 经典-本地帐户以自己的身份验证。 6。 在XP SP2 中确保防火墙允许远程的登录。命令:netsh firewall set service RemoteAdmin enable(禁用为disable)。 7。 注意系统安装其他防火墙或杀毒软件的设置是否允许访问。 8。 确保WMI或相关服务正在运行。XP中可能涉及到的服务有:     COM+ Event System     Remote Access Auto Connection Manager     Remote Access Connetion Manager     Remote Procedure Call(RPC)     Remote Procedure Call(RPC)Locator     Remote Registry     Server     Windows Management Instrumentation     Windows Management Instrumentation Driver Extensions     WMI Performance Adapter     Workstation

转载于:https://www.cnblogs.com/alabasta/archive/2012/04/01/2427835.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
,发送类别,概率,以及物体在相机坐标系下的xyz.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值