割线法的matlab程序,MATLAB实现NEWTON法 割线法 抛物线法.pdf

(一)实验目的:

熟悉和掌握Newton法,割线法,抛物线法的方法思路,并能够在

matlab上编程实现

(二)问题描述:

问题一. 方程求根

(1).给定一个三次方程,分别用Newton法,割线法,抛物线法求解.

方程的构造方法:

(a)根:方程的根为学号的后三位乘以倒数第二位加1再除以1000.

假设你的学号为则根为141*(4+1)/1000 0.564

(b)方程:以你的学号的后三位数分别作为方程的三次项,二次项,一

次项的系数,根据所给的根以及三个系数确定常数项.

例如:

3 2

你的学号是则你的方程是x+4x+x+a 0的形式.

0

方程的根为0.564,因此有

3 2

0.564+4*0.564+0.564+a0 0,于是a0 -2.015790144

3 2

你的方程为x+4x+x-2.015790144 0.

2

(2)假设方程是sinx+4x+x+a0 0 的形式 (三个系数分别是学号中的

数字),重新解决类似的问题

(3)构造一个五次方程完成上面的工作.

2

四次方程的构造:将三次多项式再乘以(x-p*) 得到对应的五次多项

式(p*为已经确定的方程的根,显然,得到的五次方程有重根).

(4)将 (2)中的方程同样乘以(x-p*)得到一个新的方程来求解

(三)算法介绍

在本文题中,我们用到了newton法,割线法,抛物线法。

1.Newton法迭代格式为:

当初值与真解足够靠近,newton迭代法收敛,对于单根,newton

收敛速度很快,对于重根,收敛较慢。

2.割线法:为了回避导数值的计算,使用上的差商代替,得到割

线法迭代公式:

割线法的收敛阶虽然低于newton法,但迭代以此只需计算一次

函数值,不需计算其导数,所以效率高,实际问题中经常应用。

3.抛物线法:可以通过三点做一条抛物线,产生迭代序列的方法

称为抛物线法。其迭代公式为:

其中

收敛速度比割线法更接近于newton法。

对于本问题的解决就以上述理论为依据。终止准则为:

本题中所有取1e-6。

(四)程序

注:n表示迭代步数。

第一题 (1)首先根据题目要求对方程进行构造,得到的方程为:

Newton法求解算法

建立newton1.m源程序,源程序代码为:

function x newton1(fn,dfn,x0,e)

if nargin<4,e 1e-4;end

x x0;x0 x+2*e;

while abs(x0-x)>e

x0 x;

x x0-feval(fn,x0)/feval(dfn,x0);

end

在matlab软件中执行下列语句并得到最终结果截图

>> clear

>> fun inline('x^3+2*x-0.205061208');

>> dfun inline('3*x^2+2');format long;

>> newton1(fun,dfun,0.5,1e-6),format short

并得到最终结果

n

4

ans

0.10200000000000

割线法求解算法

建立gexianfa.m源程序,源程序代码为:

function x gexian(f,x0,x1,e)

if nargin<4,e 1e-4;end

y x0;x x1;

while abs(x-y)>e

z x-(feval(f,x)*(x-y))/(feval(f,x)-feval(f,y));

y x;

x z;

end

在matlab软件中执行下列语句

>> clear

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值