

尺规作图是什么?
尺规作图能作什么?
为什么直尺要求不带刻度?
尺规作图里有着什么逻辑?
什么是尺规作图三大不能解决难题?

顾名思义,就是有限次地利用没有刻度的直尺和圆规来按要求作图。是古希腊的一个数学课题,因趣味性及创造性一直深受人喜爱,时至今日依然是热议的数学话题之一。
为什么要用不带刻度的直尺?难道说条件落后到造不出一个带刻度的尺子了?当然不是,反面来考虑,如果直尺带有刻度,这个话题就变得很普通而又无趣,直接上尺子量就好了,就没什么意思了!
尺规作图所追求的就是利用尽可能少的条件去解决复杂的问题,这样也才能显现我们卓越的智慧。
甚至如果可以的话,连尺子也不要用,实际上确实存在这样的话题:单规作图。

不管是几何,还是代数,都会有最基本的公理存在,作为我们推断其他结论的理论依据,比如自然数的皮亚诺公理,欧氏几何的五条公设等等,尺规作图也不另外,我们作出的各种各样的图,都可以归根结底到以下5条公法:
(1)根据两个已经确定的点作出经过这两个点的直线。
(2) 以一个已经确定的点为圆心,以两个已经确定的点之间的距离为半径作圆。
(3) 确定两个已经做出的相交直线的交点。
(4)确定已经做出的相交的圆和直线的交点。
(5) 确定已经做出的相交的两个圆的交点。
以上作图简单到你觉得我可能在糊弄你,但我真的没有这个意思,仔细去想,尺规作图作的每一个步骤都是以上五个操作其中之一,任何复杂的作图都都是由基本操作设计组合而成。
数学就是这样由一些公认的基本事实(公理)不断堆砌而成的大厦,地基打得越扎实,楼便能盖得越高。
当然在我们实际作图中考虑的问题是,如何对以上操作设计一个组合,得出解决问题的方案。
接下来,对公法作一个升级,有一些尺规作图的基本作图:
(1)作一条线段等于已知线段
(2)作一个角等于已知角
(3)作已知线段的垂直平分线
(4)作已知角的角平分线
(5)过一点作已知直线的垂线
(6)过一点作已知直线的平行线
(7)过不共线的三点作圆
相信这几个问题对我们来说肯定是小开思了,此处就不一一画图了。由于公法太过朴素,不好用,于是我们设置一些基本作图,为了简化步骤,将作图方案改为由以上基本作图组成而成。
说了这么多,我们好像还没介绍如何根据一个具体的问题去设计作图方案。
不急不急,解决复杂问题前一定得先弄明白我们能作什么,知道自己有什么工具,才能了解能去解决什么问题。
磨刀不误砍柴工,接下来我们看个例子。

问题:已知线段AB,作AB的黄金分割点。
问题分析:不妨设线段AB长度为1,构造其黄金分割点即构造一个长度为的线段.
步骤1:取AC中点(构造长为1/2的线段)
步骤2:过点B作线段AB的垂线(构造直角)
步骤3:以B点为圆心,BC为半径画圆(构造BD=1/2)
步骤4:连接AD(构造直角三角形ABD)
步骤5:以点D为圆心,DB为半径画圆,与AD交于E点.(构造AE=)
步骤6:以A为圆心,AE为半径作圆与AB交于M点,M即为黄金分割点。

通过上面的例子,我们可以这么说,所谓的尺规作图,与其说图是画出来的,不如说是算出来的。
尺规作图看似是几何问题,实际上,每一个问题的作图依据都蕴含着代数的运算。正是有这样一步一步精准的计算,才能准确地作出想要的图形。
那是不是任何图都能画?显然不是。什么样的图能画,什么样的图不能画,或者说,具体有运算是可以画出来的?
给定两个线段a、b,可作以下:
1、加法:即构造长度为a+b的线段。
2、减法:即构造长度为构造a-b(a>b)的线段。
3、乘法:若想作出线段a·b,则还需给出单位1.若无单位1,则无法知道两者比例,也无法得知两者乘积。
如图,置a、b共线,任取非共线一点C使MC=1,作过A、B、C三点的圆,延长CM与圆交点记为D点,根据相交弦定理:MA·MB=MC·MD,MD记为所求线段ab。
4、除法:类似乘法:
将线段1和线段b调换位置,根据MA·MB=MC·MD,即可作出线段a/b。
5、乘方:等同于作乘法,例如a^2=a·a,a的整数次幂均可作。
6、开方:置线段a与线段1共线,以a+1为直径构造圆,过M点作垂线交圆于点C,由射影定理可得:MC=。
总结:给定a、b和单位1,可作加法、减法、乘法、除法、开方五种运算的结果。用加减乘除开方算出的实数,均可用尺规作图作出.并且除此之外的运算,也被证明是不可作。
回顾上面作黄金分割点的例子,其问题即为已知1,作,这里涉及到开方、减法、除法,所以可作。
所以如何去设计作图方案?首先得算出来,然后按照我们上面做加、减、乘、除、开方的方法去画出计算所得的结果就好了呀!

高斯同学曾利用尺规作图作出正十七边形,为什么正十七边形可作,在于通过计算发现,正十七边形的内角满足:
观察其内角的余弦值,尽管式子很长且复杂,但是其可通过加减乘除开方得到,并未涉及其他运算,故这样的一个角是可以作出来的,角可作则正十七边形可作,当然作图过程也是比较复杂,此处放个图自行感受一下。
再比如说同为正多边形家族的正七边形却作不了,为啥呢?因为正七边形的内角满足是方程
的根,此三次方程求根涉及开立方运算,不在我们尺规作图能力范围之内,无法做出这个角,便无法作出这个图形。
数学史上流传着一个传说,尺规作图有三大未解难题:化圆为方、倍立方体、三等分角。
在基础理论尚未构建完成的时代,总有人想要去证明出来,当我们理解尺规作图的原理,再来看这些问题的时候,他们之所以不可作,就显得非常简单了。
1、化圆为方:作一个面积与已知圆相等的正方形。设给定圆的半径为1,则面积为π,若要作一个正方形的面积和此圆相等,则正方形边长为,即问题变成:已知1作
,因为π是超越数(上一篇提过),故不可作。
2、倍立方体:已知一个立方体,作一个体积等于其两倍的立方体。设给定立方体边长为1,则体积为1,作一个体积为2的立方体即构造长度为三次根号2的线段,前面我们已经讲了仅能作开平方,并不能作开立方,故不可作。
3、三等分角:任意给一个角,对其作三等分。这个问题等价于已知cosA,求方程的根,根据三次方程的公式解可以发现,一般性的三次方程其结果仅仅是二次根号是表示不出来的,故不可作。
谢谢阅读,以上都是瞎编的。




