c++opencv车牌识别_车牌中的文字识别 OCR车牌识别

本文介绍了使用OpenCV和深度学习进行车牌识别的过程,包括摄像头抓拍、车牌位置定位、倾斜校正、字符切割和识别。在Android端,通过OpenCV初始化和JNI接口加载模型,实时抓拍并回调帧数据,利用级联分类器检测车牌,并采用CNN对字符进行识别。
摘要由CSDN通过智能技术生成

车牌识别在现实生活当中非常普遍:高速公路、停车系统、电子警察,甚至出现在车载设备上。它的工作原理大致这样:使用摄像头充当“眼睛”,使用openCV与深度学习充当“大脑”。实时车牌识别工作步骤:摄像头抓拍—>openCV初步定位车牌位置—>二次确认车牌位置的左右上下边界—>车牌倾斜校正—>车牌字符切割—>车牌字符识别。其中,车牌检测是车牌识别的前提条件和重要基础。

3e6e6750e9f3995b865d7da8053e722f.png

安卓车牌识别:android端使用openCV如何实现车牌检测。

关于openCV的初始化,调用车牌识别JNI接口时,首先进行初始化,加载caffe训练模型相关文件:

plateRecognition = new PlateRecognition(this, mHandler);

//init plate recognizer

new Thread(new Runnable() {

@Override

public void run() {

plateRecognition.initRecognizer("pr");

}

}).start();

摄像头实时抓拍,回调每帧数据给车牌识别线程。需要注意的是,车牌识别中openCV操作对象是Mat,而不是Bitmap:

public Mat onCamera

目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重 要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋 势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方 法进行车辆型号的识别和分类展开了一系列研究: 本文对当前的目标识别和分类的特征和算法做了总结和归纳。分析比较了作为图 像特征描述常见的特征算子,总结归纳了他们的提取方法、特征性能以及相互之间的 关联。另外,介绍了在目标识别工作常用的分类方法,阐述了他们各自的原理和工作 方法。研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方 法,以及卷积神经网络的训练方法。分析比较不同特征学习方法的特点选取 k-means 作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆 车型识别工作。 本文为了测试基于深度学习的车辆型号分类算法的性能在 30 个不同型号共 7158 张图片上进行实验;并在相同数据上利用改进了的 SIFT 特征匹配的算法进行对比实验; 进过实验测试,深度学习方法在进行车型分类的实验取得 94%的正确率,并在与 SIFT 匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值