BZOJ 3720 树分块

借鉴了别人的代码……

//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 66666
struct Blocks{
    int a[210],size;
    void Insert(int x){
        ++size;int i;
        for(i=size;i>1&&a[i-1]>x;i--)a[i]=a[i-1];
        a[i]=x;
    }
    void Modify(int x,int y){
        int temp=lower_bound(a+1,a+1+size,x)-a;
        for(;temp<size&&a[temp+1]<y;temp++)a[temp]=a[temp+1];
        for(;temp>1&&a[temp-1]>y;temp--)a[temp]=a[temp-1];
        a[temp]=y; 
    }
    int Query(int x){
        return size-(upper_bound(a+1,a+1+size,x)-a)+1;
    }
}blocks[10500];
int n,m,op,xx,yy,block,cnt,ans,a[N],fa[N],belong[N];
int first[N],bfirst[N],next[N*2],v[N*2],tot;
void add(int Head[],int x,int y){v[tot]=y,next[tot]=Head[x],Head[x]=tot++;}
void DFS(int x){
    if(blocks[belong[fa[x]]].size==block)
        blocks[belong[x]=++cnt].Insert(a[x]),add(bfirst,belong[fa[x]],cnt);
    else blocks[belong[x]=belong[fa[x]]].Insert(a[x]);
    for(int i=first[x];~i;i=next[i])
        if(v[i]!=fa[x])fa[v[i]]=x,DFS(v[i]);
}
void bdfs(int x,int y){
    ans+=blocks[x].Query(y);
    for(int i=bfirst[x];~i;i=next[i])bdfs(v[i],y);
}
void dfs(int x,int y){
    if(a[x]>y)ans++;
    for(int i=first[x];~i;i=next[i])
        if(v[i]!=fa[x]){
            if(belong[v[i]]==belong[x])dfs(v[i],y);
            else bdfs(belong[v[i]],y);
        }
}
int main(){
    memset(first,-1,sizeof(first)),memset(bfirst,-1,sizeof(bfirst));
    scanf("%d",&n);
    for(int i=1;i<n;i++)
        scanf("%d%d",&xx,&yy),add(first,xx,yy),add(first,yy,xx);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    block=int(sqrt(n)+0.5),DFS(1);
    scanf("%d",&m);
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&op,&xx,&yy),xx^=ans,yy^=ans;
        if(!op){ans=0;dfs(xx,yy);printf("%d\n",ans);}
        else if(op==1)blocks[belong[xx]].Modify(a[xx],yy),a[xx]=yy;
        else{
            a[++n]=yy,add(first,xx,n),fa[n]=xx;
            if(blocks[belong[xx]].size==block)
                blocks[belong[n]=++cnt].Insert(a[n]),add(bfirst,belong[xx],cnt);
            else blocks[belong[n]=belong[xx]].Insert(a[n]);
        }
    }
}

转载于:https://www.cnblogs.com/SiriusRen/p/6532031.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值