求大的组合数模板 利用Lucas定理

本文介绍了Lucas定理及其在组合数计算中的应用,Lucas定理用于求解大数组合数问题,特别是在模质数运算下。文章详细解释了定理的原理,包括如何将大数转换为p进制形式,并通过递归方式计算模p同余的组合数。
摘要由CSDN通过智能技术生成

Lucas定理:A、B是非负整数,p是质数。A B写成p进制:A=a[n]a[n-1]…a[0],B=b[n]b[n-1]…b[0]。
则组合数C(A,B)与C(a[n],b[n])C(a[n-1],b[n-1])…*C(a[0],b[0]) mod p同余
即:Lucas(n,m,p)=C(n%p,m%p)*Lucas(n/p,m/p,p)

ll fact[maxn], a[maxn], inv[maxn]; //fact为阶乘
void init() {
    a[0] = a[1] = 1;
    fact[0] = fact[1] = 1;
    inv[1] = 1;
    for( ll i = 2; i <= 100005; i ++ ) {
        fact[i] = fact[i-1] * i % mod;
        inv[i] = (mod - mod/i)*inv[mod%i]%mod;
        a[i] = a[i-1] * inv[i] % mod;
    }
}

ll C( ll n, ll m ) {
    return fact[n]*a[n-m]%mod*a[m]%mod;
}

  

转载于:https://www.cnblogs.com/l609929321/p/9740055.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值