组合数取模计算模板

1一般组合数计算

mod的要求:无

有效范围:1<=n,m<=60

————————————————————————————————

//一般方法求C(n,m)最后取模。C(62,28)溢出。有效范围1<n,m<=60
ll CNormal(int n, int m)
{
	if ( m>n ) return 0;
	ll ans = 1;
	for (int i=1; i<=m; i++)
	{
		ans *= (n – m + i);
		ans /= i;
	}
	return ans % mod;
}

 

2杨辉三角计算组合数

mod的要求:无

有效范围:1<=n,m<=1000

————————————————————————————————

//杨辉三角求C(n,m)
ll matrix[110][110]={0};
ll CMatrix(int n, int m)
{
	if ( m>n ) return 0;
	ll ans = 0;
	matrix[1][0] = matrix[1][1] = 1;
	for (int i=2; i<=n; i++)
	{
		int k = min(i, m);
		for(int j=0; j<=k; j++)
		{
			if ( j==0 || j==i )	matrix[i][j] = 1;
			else matrix[i][j] = (matrix[i-1][j] + matrix[i-1][j-1]) % mod;
		}
	}
	return matrix[n][m];
}

 

3利用乘法逆元求组合数

mod的要求:mod为素数,且m<mod或GCD(mod, m)=1

有效范围:1<=n,m<=10^6

————————————————————————————————

//获得a在mod下的乘法逆元
ll GetInverse(ll a, ll mod)
{
	ll ans = 1, n = mod - 2;
	a %= mod;
	while ( n )
	{
		if ( n&1 ){
			ans = ans * a % mod;
		}
		n >>= 1;
		a = a * a % mod;
	}
	return ans;
}

//逆元求C(n,m)%mod
ll C(ll n, ll m)
{
	if ( m>n ) return 0;
	ll ans = 1;
	for (int i=1; i<=m; i++)
	{
		ll a = (n + i - m) % mod;
		ll b = i % mod;
		ans = ans * (a * GetInverse(b, mod) % mod) % mod;
	}
	return ans;
}

 

4分解因子求组合数

mod的要求:无(可为合数)

有效范围:1<=n,m,p<=10^6

————————————————————————————————

// 求素数表
int prime[1000000] = {0};
bool isPrime[1000000];
void getPrime(int maxn)
{
	int n = 0;
	memset(isPrime, true, sizeof(isPrime));
	for (int i=2; i<=maxn; i++)
	{
		if ( isPrime[i] )
		{
			prime[n++] = i;
			for (int j=i*2; j<=maxn; j+=i) isPrime[j] = false;
		}
	}
}

//快速幂
long long myPow(long long a,long long b)
{
	long long r=1, base=a % mod;
	while ( b )
	{
		if ( b&1 ){
			r *= base;
			r %= mod;
		}
		base *= base;
		base %= mod;
		b >>= 1;
	}

	return r;
}

//获得n!中因子p的个数
ll getPNum(ll n, ll p)
{
	ll ans = 0;
	while ( n )
	{
		ans += n / p;
		n /= p;
	}
	return ans;
}

//利用因子求C(n,m)
ll CFactor(ll n, ll m)
{
	if ( m>n ) return 0;
	ll ans = 1;
	for (int i=0; prime[i]!=0 && prime[i]<=n; i++)
	{
		ll a = getPNum(n, prime[i]);
		ll b = getPNum(m, prime[i]);
		ll c = getPNum(n - m, prime[i]);
		a -= (b + c);
		ans *= myPow(prime[i], a);
		ans %= mod;
	}
	return ans;
}

              5 Lucas定理

mod的要求:素数

有效范围:1<=n,m,p<=10^9

————————————————————————————————

//获得a在mod下的乘法逆元
ll GetInverse(ll a, ll mod)
{
	ll ans = 1, n = mod - 2;
	a %= mod;
	while ( n )
	{
		if ( n&1 ){
			ans = ans * a % mod;
		}
		n >>= 1;
		a = a * a % mod;
	}
	return ans;
}

//逆元求C(n,m)%mod
ll C(ll n, ll m)
{
	if ( m>n ) return 0;
	ll ans = 1;
	for (int i=1; i<=m; i++)
	{
		ll a = (n + i - m) % mod;
		ll b = i % mod;
		ans = ans * (a * GetInverse(b, mod) % mod) % mod;
	}
	return ans;
}

//利用lucas定理求C(n,m)
ll CLucas(ll n, ll m)
{
	//if ( m==0 ) return 1;
	//return C(n % mod, m % mod) * CLucas(n / mod, m / mod) % mod;

	ll ans = 1;
	while ( m )
	{
		ans = ans * C(n % mod, m % mod) % mod;
		n /= mod;
		m /= mod;
	}
return ans;
}

 

              6半预处理型

mod的要求:p<10^6,且为素数

有效范围:1<=n,m<=10^9

——————————————————————————————————

//半预处理
const ll MAXN = 100000;
ll fac[MAXN+100];
void init(int mod)
{
	fac[0] = 1;
	for (int i=1; i<mod; i++){
		fac[i] = fac[i-1] * i % mod;
	}
}

//半预处理逆元求C(n,m)%mod
ll C(ll n, ll m)
{
	if ( m>n ) return 0;
	return fac[n] * (GetInverse(fac[m]*fac[n-m], mod)) % mod;
}

//利用lucas定理求C(n,m)
ll CLucas(ll n, ll m)
{
	//if ( m==0 ) return 1;
	//return C(n % mod, m % mod) * CLucas(n / mod, m / mod) % mod;

	ll ans = 1;
	while ( m )
	{
		ans = ans * C(n % mod, m % mod) % mod;
		n /= mod;
		m /= mod;
	}
<pre name="code" class="cpp">	return ans;
}
 

 

            7全预处理型

mod的要求:p<10^4,且为素数

有效范围:1<=n,m<=10^9

——————————————————————————————————

//阶乘预处理
int prime[10000+10] = {0};
bool isPrime[10000+10];
int inverse[10000][1250] = {0};
int fac[10000][1250] = {0};
void init(int maxn)
{
	int n = 0;
	memset(isPrime, true, sizeof(isPrime));
	for (int i=2; i<maxn; i++)
	{
		if ( isPrime[i] )
		{
			prime[i] = n;
			for (int j=i*2; j<maxn; j+=i) isPrime[j] = false;

			//计算逆元
			inverse[0][n] = inverse[1][n] = 1;
			for (int j=2; j<i; j++)
			{
				inverse[j][n] = (i - i/j) * inverse[i%j][n] % i;
			}

			//预处理阶乘
			fac[0][n] = fac[1][n] = 1;
			for (int j=2; j<i; j++)
			{
				fac[j][n] = j * fac[j-1][n] % i;//普通阶乘
				inverse[j][n] = inverse[j][n] * inverse[j-1][n] % i;//逆元阶乘
			}

			n++;
		}
	}
}


//全预处理求C(n,m)%mod
ll C(int n, int m)
{
	if ( m>n ) return 0;
	int num = prime[i];
	return (ll)fac[n][num] * inverse[m][num] % i * inverse[n-m][num] % i;
}

//利用lucas定理求C(n,m)
ll CLucas(ll n, ll m)
{
	//if ( m==0 ) return 1;
	//return C(n % mod, m % mod) * CLucas(n / mod, m / mod) % mod;

	ll ans = 1;
	while ( m )
	{
		ans = ans * C(n % mod, m % mod) % mod;
		n /= mod;
		m /= mod;
	}
	return ans;
}


  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值