辨别是否为哈夫曼编码

本周要准备期中考试,只写了一个判断哈夫曼编码的程序

判断是否为哈夫曼编码分为两个步骤

1.判断是否为最小的带权路径长度

思路:
先根据哈夫曼编码的原则求出最小哈夫曼树的最小带权路径长度,与所给编码的带权路径长度比较,若等于则进行下一步比较,若不等于则返回NO

实现方法

构造进队时就进行排队的队列

图片描述

实现代码

void queueIn(int x) {                        //入队列


        if (head->data != 0)
        {
            // 找出元素插入的位置
            pNode p = new Node;
            pNode q = head->next;
            pNode r = head;
            p->data = x;

            while (q->next && p->data > q->data)
            {
                q = q->next;
                r = r->next;
            }

            // 元素与队尾元素比较确定插入位置
            if (!q->next)
            {
                if (q->data > p->data)
                {
                    p->next = r->next;
                    r->next = p;
                }
                else {
                    p->next = tail->next;
                    tail->next = p;
                    tail = p;
                }
            }

            // 将元素插入
            else {
                p->next = r->next;
                r->next = p;
            }
        }

        // 若队中没有元素,则直接插入
        else {
            pNode p = new Node;
            p->data = x;

            p->next = tail->next;
            tail->next = p;
            tail = p;
        }

        head->data++;
    }

依次出队两个元素 将计算结果分别计入总和中,并再次入队,循环直到队列只有一个元素为止

while (queue.isEmpty() > 1) {
        int x, y, z;
        x = queue.queueOut();
        y = queue.queueOut();
        z = x + y;
        sum1 = sum1 + z;
        queue.queueIn(z);
    }

再求出所给编码带权路径长度,进行比较

2.若最小带权路径符合要求,则判断前缀码是否包含其他叶子节点的编码

clipboard.png

实现代码

if (sum1 == sum2)
        {

            sort(array.begin(), array.end(), [](string &a, string &b) {
                return a.size() > b.size();
            });
            int status = 0;
            for (int i = num_weight - 1; i >= 0; i--)
            {
                int x = array[i].length();
                for (int j = i - 1; j >= 0; j--)
                {
                    string str1 = array[j].substr(0, x);
                    if (str1 == array[i])
                    {
                        judge.push_back(0);
                        status = 1;
                        break;
                    }

                }
                if (status == 1)
                    break;
            }
            if (status == 0)
                judge.push_back(1);
        }
        else {
            judge.push_back(0);
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值