本周要准备期中考试,只写了一个判断哈夫曼编码的程序
判断是否为哈夫曼编码分为两个步骤
1.判断是否为最小的带权路径长度
思路:
先根据哈夫曼编码的原则求出最小哈夫曼树的最小带权路径长度,与所给编码的带权路径长度比较,若等于则进行下一步比较,若不等于则返回NO
实现方法
构造进队时就进行排队的队列
实现代码
void queueIn(int x) { //入队列
if (head->data != 0)
{
// 找出元素插入的位置
pNode p = new Node;
pNode q = head->next;
pNode r = head;
p->data = x;
while (q->next && p->data > q->data)
{
q = q->next;
r = r->next;
}
// 元素与队尾元素比较确定插入位置
if (!q->next)
{
if (q->data > p->data)
{
p->next = r->next;
r->next = p;
}
else {
p->next = tail->next;
tail->next = p;
tail = p;
}
}
// 将元素插入
else {
p->next = r->next;
r->next = p;
}
}
// 若队中没有元素,则直接插入
else {
pNode p = new Node;
p->data = x;
p->next = tail->next;
tail->next = p;
tail = p;
}
head->data++;
}
依次出队两个元素 将计算结果分别计入总和中,并再次入队,循环直到队列只有一个元素为止
while (queue.isEmpty() > 1) {
int x, y, z;
x = queue.queueOut();
y = queue.queueOut();
z = x + y;
sum1 = sum1 + z;
queue.queueIn(z);
}
再求出所给编码带权路径长度,进行比较
2.若最小带权路径符合要求,则判断前缀码是否包含其他叶子节点的编码
实现代码
if (sum1 == sum2)
{
sort(array.begin(), array.end(), [](string &a, string &b) {
return a.size() > b.size();
});
int status = 0;
for (int i = num_weight - 1; i >= 0; i--)
{
int x = array[i].length();
for (int j = i - 1; j >= 0; j--)
{
string str1 = array[j].substr(0, x);
if (str1 == array[i])
{
judge.push_back(0);
status = 1;
break;
}
}
if (status == 1)
break;
}
if (status == 0)
judge.push_back(1);
}
else {
judge.push_back(0);
}