树形dp①

树形dp大概是在树上的dp,可以有一些父亲节点和儿子节点的关系来dp

一道经典例题:

没有上司的舞会
Ural 大学有 N 个职员,编号为 1-N。他们有从属关系,也就是说他们
的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每
个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐
指数最大。但是,没有职员愿和直接上司一起与会。
tyvj1052

简单来讲就是某个职员的直接上司参加,这些职员都不会参加,发现上司和职员的关系像一颗树,可以先思考方程

                                                    少女祈祷中......

dp[i][1/0]表示i节点这个人来或不来时所能达到的最大欢乐指数;则max(dp[root][0/1])就是答案;

则可以写出方程

dp[i][1]+=max(dp[son[i]][0]),

dp[i][0]+=max(dp[son[i][1],dp[son[i]][0]);

则代码如下

#include <cstdio>
#include <algorithm>

using namespace std;

int n;
int ri[6010],root;
int f[6010][2];
struct data
{
    int v,nxt;
}edge[6010];
int cnt,alist[6010];
void add(int u,int v)        //邻接表存图
{
    edge[++cnt].v=v;
    edge[cnt].nxt=alist[u];
    alist[u]=cnt;
}
int poi[6010];
void dp(int x)
{
    f[x][0]=0;
    f[x][1]=ri[x];      //如果x来了,欢乐指数加x自己的
    int nxt=alist[x];
    while(nxt)        //遍历儿子
    {
        int son=edge[nxt].v;
        dp(son);
        f[x][0]+=max(f[son][0],f[son][1]);    //刚才的方程
        f[x][1]+=f[son][0];
        nxt=edge[nxt].nxt;
    }
}
int main()
{
   // freopen("in","r",stdin);
    scanf("%d",&n);
    for(int i=1;i<=n;++i)
    {
        scanf("%d",&ri[i]);
    }
    for(int i=1;i<n;++i)
    {
        int u,v;
        scanf("%d%d",&u,&v);      //存图
        add(v,u);
        poi[u]=1;
    }
    for(int i=1;i<=n;++i)         //找到根节点
    {
        if(poi[i]==0)
        {
            root=i;
            break;
        }
    }
    dp(root);
    printf("%d",max(f[root][0],f[root][1]));
}

然后看一道稍微变式题

luogu p2014选课

题目描述

在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b)。一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少?

输入输出格式

输入格式:

第一行有两个整数N,M用空格隔开。(1<=N<=300,1<=M<=300)

接下来的N行,第I+1行包含两个整数ki和si, ki表示第I门课的直接先修课,si表示第I门课的学分。若ki=0表示没有直接先修课(1<=ki<=N, 1<=si<=20)。

输出格式:

只有一行,选M门课程的最大得分。

dp[i][j]表示第i个点选j个数所获的最大学分,包括自己;

dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[i][k]);            (哈~~~,好困)

看代码吧

#include <cstdio>
#include <algorithm>

using namespace std;

int n,m;
struct data
{
    int v,nxt;
}edge[600];
int cnt,alist[600];
void add(int u,int v)
{
    edge[++cnt].v=v;
    edge[cnt].nxt=alist[u];
    alist[u]=cnt;
}
int val[310];int f[310][310];
void dp(int x)
{
    f[x][1]=val[x];
//    printf("%d\n",nxt);
    for(int i=alist[x];i;i=edge[i].nxt)    //遍历son节点
    {
        int son=edge[i].v;
        dp(son);
        for(int j=m+1;j>=1;--j)          //枚举在x的son中选几个,倒叙很重要
        {
            for(int k=0;k<j;++k)          //枚举在son中选几个
            {
                f[x][j]=max(f[x][j],f[x][j-k]+f[son][k]);
            }
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
    {
        int v;
        scanf("%d%d",&v,&val[i]);
        add(v,i);
    }
    dp(0);        //因为没根,所以建一个总根
    printf("%d",f[0][m+1]);
}

 

                                    少女犯困中......

                                                00:13:55

 

转载于:https://www.cnblogs.com/AidenPearce/p/8468138.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值