Doolitter分解 三对角矩阵分解 拟三对角分解

  1 #include <cstdio>
  2 #include <cstdlib>
  3 #include <algorithm>
  4 #include <cmath>
  5 #include <cassert>
  6 #include <vector>
  7 #include <ctime>
  8 
  9 
 10 class MclVector
 11 {
 12 public:
 13     int n;
 14     double *Mat;
 15     /**
 16       type=0: 列向量(默认)
 17       type=1: 行向量
 18     **/
 19     int type;
 20 
 21     MclVector() { Mat=NULL; n=0; }
 22     MclVector(int len,double initVal=0.0)
 23     {
 24         n=len;
 25         Mat=new double[n+1];
 26         for(int i=0;i<=n;i++) Mat[i]=initVal;
 27         type=0;
 28     }
 29 
 30 
 31     double operator[](int id) const
 32     {
 33         return Mat[id];
 34     }
 35 
 36 
 37     double& operator[](int id)
 38     {
 39         return Mat[id];
 40     }
 41 
 42     double length() const
 43     {
 44         double sum=0;
 45         for(int i=1;i<=n;i++) sum+=Mat[i]*Mat[i];
 46         return sqrt(sum);
 47     }
 48 
 49     MclVector operator*(double val) const
 50     {
 51         MclVector ans=MclVector(n);
 52         for(int i=1;i<=n;i++) ans[i]=Mat[i]*val;
 53         return ans;
 54     }
 55 
 56     MclVector operator/(double val) const
 57     {
 58         MclVector ans=MclVector(n);
 59         for(int i=1;i<=n;i++) ans[i]=Mat[i]/val;
 60         return ans;
 61     }
 62 
 63     MclVector operator+(const MclVector &newVector) const
 64     {
 65         MclVector ans=MclVector(n);
 66         for(int i=1;i<=n;i++) ans[i]=Mat[i]+newVector[i];
 67         return ans;
 68     }
 69 
 70 
 71     MclVector operator-(const MclVector &newVector) const
 72     {
 73         MclVector ans=MclVector(n);
 74         for(int i=1;i<=n;i++) ans[i]=Mat[i]-newVector[i];
 75         return ans;
 76     }
 77 
 78     MclVector operator*=(double val)
 79     {
 80         for(int i=1;i<=n;i++) Mat[i]=Mat[i]*val;
 81         return *this;
 82     }
 83 
 84     MclVector operator/=(double val)
 85     {
 86         for(int i=1;i<=n;i++) Mat[i]=Mat[i]/val;
 87         return *this;
 88     }
 89 
 90 
 91     MclVector operator+=(const MclVector &newVector)
 92     {
 93         for(int i=1;i<=n;i++) Mat[i]+=newVector[i];
 94         return *this;
 95     }
 96 
 97     MclVector operator-=(const MclVector &newVector)
 98     {
 99         for(int i=1;i<=n;i++) Mat[i]-=newVector[i];
100         return *this;
101     }
102 
103     MclVector GetTranspose() const
104     {
105         MclVector ans=*this;
106         ans.type=1;
107         return ans;
108     }
109 
110 
111     void print() const
112     {
113         for(int i=1;i<=n;i++) printf("%8.3lf ",Mat[i]);
114         puts("");
115     }
116 
117 
118 };
119 
120 class MclMatrix
121 {
122 public:
123     int row,col;
124     MclVector *Mat;
125 
126     MclMatrix() {Mat=NULL;}
127     MclMatrix(int _row,int _col,double initVal=0.0)
128     {
129         row=_row;
130         col=_col;
131         Mat=new MclVector[row+1];
132         for(int i=0;i<=row;i++) Mat[i]=MclVector(col,initVal);
133     }
134 
135     void setIdentityMatrix()
136     {
137         for(int i=1;i<=row;i++)
138         {
139             for(int j=1;j<=col;j++)
140             {
141                 if(i==j) Mat[i][j]=1;
142                 else Mat[i][j]=0;
143             }
144         }
145     }
146 
147     MclMatrix GetTranspose() const
148     {
149         MclMatrix ans=MclMatrix(col,row);
150         for(int i=1;i<=ans.row;i++)
151         {
152             for(int j=1;j<=ans.col;j++)
153             {
154                 ans[i][j]=Mat[j][i];
155             }
156         }
157         return ans;
158     }
159 
160     void print() const
161     {
162         for(int i=1;i<=row;i++) Mat[i].print();
163         puts("");
164     }
165 
166     MclVector& operator[](int id) const
167     {
168         return Mat[id];
169     }
170 
171 
172     MclVector& operator[](int id)
173     {
174         return Mat[id];
175     }
176 
177     MclMatrix operator*(const MclMatrix &Matrix) const
178     {
179         MclMatrix ans=MclMatrix(row,Matrix.col);
180         for(int i=1;i<=row;i++)
181         {
182             for(int j=1;j<=Matrix.col;j++)
183             {
184                 for(int k=1;k<=col;k++)
185                 {
186                     ans[i][j]+=Mat[i][k]*Matrix[k][j];
187                 }
188             }
189         }
190         return ans;
191     }
192 
193     MclMatrix operator+(const MclMatrix &Matrix) const
194     {
195         MclMatrix ans=MclMatrix(row,Matrix.col);
196         for(int i=1;i<=row;i++)
197         {
198             for(int j=1;j<=Matrix.col;j++)
199             {
200                 ans[i][j]=Mat[i][j]+Matrix[i][j];
201             }
202         }
203         return ans;
204     }
205 
206     MclMatrix operator-(const MclMatrix &Matrix) const
207     {
208         MclMatrix ans=MclMatrix(row,Matrix.col);
209         for(int i=1;i<=row;i++)
210         {
211             for(int j=1;j<=Matrix.col;j++)
212             {
213                 ans[i][j]=Mat[i][j]-Matrix[i][j];
214             }
215         }
216         return ans;
217     }
218 
219     MclVector GetCol(int colId) const
220     {
221         MclVector ans=MclVector(row);
222         for(int i=1;i<=row;i++) ans[i]=Mat[i][colId];
223         return ans;
224     }
225     MclVector GetRow(int rowId) const
226     {
227         MclVector ans=MclVector(row);
228         for(int i=1;i<=col;i++) ans[i]=Mat[rowId][i];
229         return ans;
230     }
231 
232 
233     MclMatrix operator*=(const MclMatrix &Matrix)
234     {
235         return *this=*this*Matrix;
236     }
237     MclMatrix operator+=(const MclMatrix &Matrix)
238     {
239         return *this=*this+Matrix;
240     }
241     MclMatrix operator-=(const MclMatrix &Matrix)
242     {
243         return *this=*this-Matrix;
244     }
245 
246     MclMatrix operator*(double x) const
247     {
248         MclMatrix ans=*this;
249         for(int i=1;i<=row;i++)
250         {
251             for(int j=1;j<=col;j++)
252             {
253                 ans[i][j]*=x;
254             }
255         }
256         return ans;
257     }
258 
259 };
260 
261 MclMatrix vectorMulVector(const MclVector &A,const MclVector& B)
262 {
263     if(A.type==0)
264     {
265         MclMatrix ans=MclMatrix(A.n,B.n);
266         for(int i=1;i<=A.n;i++)
267         {
268             for(int j=1;j<=B.n;j++)
269             {
270                 ans[i][j]+=A[i]*B[j];
271             }
272         }
273         return ans;
274     }
275     else
276     {
277         assert(A.n==B.n);
278         MclMatrix ans=MclMatrix(1,1);
279         for(int i=1;i<=A.n;i++)
280         {
281             ans[1][1]+=A[i]*B[i];
282         }
283         return ans;
284     }
285 }
286 
287 int sgn(double x)
288 {
289     if(x<-0.000001) return -1;
290     if(x>0.000001) return 1;
291     return 0;
292 }
293 
294 
295 
296 /**
297    矩阵的 Doolittle分解:
298       [1] Mat是方阵
299       [2] Mat的前n-1阶主子式行列式不为0
300       [3] 分解的L为单位下三角阵
301       [4] 分解的U为上三角阵
302       [5] 返回值为<L,R>
303 **/
304 std::pair<MclMatrix,MclMatrix> DoolittleSplit(const MclMatrix &Mat)
305 {
306     int n=Mat.row;
307     MclMatrix L=MclMatrix(n,n);
308     MclMatrix U=MclMatrix(n,n);
309     for(int k=1;k<=n;k++)
310     {
311         for(int j=k;j<=n;j++)
312         {
313             U[k][j]=Mat[k][j];
314             for(int t=1;t<=k-1;t++) U[k][j]-=L[k][t]*U[t][j];
315         }
316         if(k==n) continue;
317 
318         for(int i=k+1;i<=n;i++)
319         {
320             L[i][k]=Mat[i][k];
321             for(int t=1;t<=k-1;t++) L[i][k]-=L[i][t]*U[t][k];
322             L[i][k]/=U[k][k];
323         }
324     }
325     for(int i=1;i<=n;i++) L[i][i]=1;
326     return std::make_pair(L,U);
327 }
328 
329 
330 
331 /**
332    三角矩阵分解:
333       [1] Mat是方阵
334       [2] j<i且i-j>r时 Mat[i][j]=0
335       [2] j>i且j-i>s时 Mat[i][j]=0
336 **/
337 std::pair<MclMatrix,MclMatrix> TriangleSplit(const MclMatrix &Mat,int r,int s)
338 {
339     int n=Mat.row;
340     MclMatrix L=MclMatrix(n,n);
341     MclMatrix U=MclMatrix(n,n);
342     for(int k=1;k<=n;k++)
343     {
344         for(int j=k;j<=n;j++)
345         {
346             U[k][j]=Mat[k][j];
347             for(int t=std::max(1,std::max(k-r,j-s));t<=k-1;t++) U[k][j]-=L[k][t]*U[t][j];
348         }
349         if(k==n) continue;
350 
351         for(int i=k+1;i<=n;i++)
352         {
353             L[i][k]=Mat[i][k];
354             for(int t=std::max(1,std::max(i-r,k-s));t<=k-1;t++) L[i][k]-=L[i][t]*U[t][k];
355             L[i][k]/=U[k][k];
356         }
357     }
358     for(int i=1;i<=n;i++) L[i][i]=1;
359     return std::make_pair(L,U);
360 }
361 
362 /**
363   拟三对角矩阵分解
364   对n=5 矩阵A样子如下:
365       a1  c1  0   0  d1
366       d2  a2  c2  0  0
367       0   d3  a3  c3 0
368       0   0   d4  a4 c4
369       c5  0   0   d5 a5
370    即输入为三个长度为n的向量
371 
372    A=LU
373    L样子如下:
374      p1  0  0  0  0
375      d2  p2 0  0  0
376      0   d3 p3 0  0
377      0   0  d3 p4 0
378      r1  r2 r3 r4 r5
379 
380    U样子如下:
381      1  q1  0  0  s1
382      0  1   q2 0  s2
383      0  0   1  q3 s3
384      0  0   0  1  s4
385      0  0   0  0  1
386 
387     即将返回p,q,s,r四个向量(所有的向量长度都是n)
388     vector[0]=p
389     vector[1]=q
390     vector[2]=s
391     vector[3]=r
392 **/
393 
394 std::vector<MclVector> QuasiDiagonalSplit(const MclVector &a,const MclVector &c,const MclVector &d)
395 {
396     int n=a.n;
397     assert(c.n==n);
398     assert(d.n==n);
399     assert(n>0);
400 
401     MclVector p=MclVector(n);
402     MclVector q=MclVector(n);
403     MclVector s=MclVector(n);
404     MclVector r=MclVector(n);
405 
406     p[1]=a[1];
407     for(int i=1;i<=n-2;i++)
408     {
409         q[i]=c[i]/p[i];
410         p[i+1]=a[i+1]-d[i+1]*q[i];
411     }
412 
413     s[1]=d[1]/p[1];
414     for(int i=2;i<=n-2;i++) s[i]=-d[i]*s[i-1]/p[i];
415     s[n-1]=(c[n-1]-d[n-1]*s[n-2])/p[n-1];
416 
417     r[1]=c[n];
418     for(int j=2;j<=n-2;j++) r[j]=-r[j-1]*q[j-1];
419     r[n-1]=d[n]-r[n-2]*q[n-2];
420     r[n]=a[n];
421     for(int j=1;j<=n-1;j++) r[n]=r[n]-r[j]*s[j];
422 
423     std::vector<MclVector> ans;
424     ans.push_back(p);
425     ans.push_back(q);
426     ans.push_back(s);
427     ans.push_back(r);
428 
429     return ans;
430 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值