- 博客(122)
- 资源 (4)
- 收藏
- 关注
原创 【MMSegmentation 环境配置】
出现AssertionError: MMCV==2.2.0 is used but incompatible. Please install mmcv>=2.0.0rc4.如果报numpy版本高,需要对numpy降版本。
2024-06-22 21:07:14 576
原创 Tensorflow2 GPU 安装方法
参考博客:https://blog.csdn.net/weixin_43412762/article/details/129824339。
2023-09-30 13:18:12 1139
原创 E: Unable to locate package libboost-all-dev
【代码】E: Unable to locate package libboost-all-dev。
2023-09-29 20:12:29 792 1
原创 Linux 服务器下 百度网盘 pypy 下载数据集
byby list 只显示自动生成的bypy中的文件,上传也是在这个目录中,可以自己在里面新建文件夹。命令行直接输入 byby info 就行。
2023-09-27 00:14:40 506
原创 TypeError: h5py objects cannot be pickled
确认不是文件出问题之后,将Dataloader加载时的num_workers,改为0即可。
2023-09-19 13:07:59 328
原创 C++ 统计程序运行时间
在上面的代码中,high_resolution_clock::now()用于获取当前时间。duration_cast(end_time - start_time).count()用于计算程序运行时间,其中duration_cast将时间间隔转换为微秒,并使用count()函数获取微秒数。最后,使用cout语句输出程序运行时间。在C++中,可以使用头文件中的high_resolution_clock和time_point类来测量程序运行时间。
2023-09-05 16:10:17 1447
原创 Yolov5 中添加注意力机制 CBAM
从上图中可以看到,前面的卷积神经网络提前特征后,分别进行两个通道注意力计算,两个通道可以并行也可以串行,但是原作者在实验中发现,串行且channel在spatial之前,性能会更好。CBAM将这两个注意力模块嵌入到CNN的卷积层之间,以增强网络对重要特征的关注度。在common.py的尾部添加如下代码,即Channel Attention 模块、Spatial Attention模块、CBAMC3模块。如果运行之后的网络输出中,出现CBAMC3,则说明添加成功,下面就是等待训练的结果。
2023-09-03 00:13:37 4657 7
原创 当数据集较小时,调节学习率的方法
当数据集较小时,调节学习率的方法当数据集较小时,调节学习率的方法可以参考以下步骤:当数据集较小时,调节学习率的方法可以参考以下步骤:先尝试一个较小的学习率,如0.001,或者根据经验设置一个初始学习率。在训练过程中,观察模型的表现,例如损失函数的下降情况,以及在验证集上的准确率等。如果损失函数下降过快,或者验证集准确率下降过快,说明学习率可能过小,需要增大学习率。如果损失函数下降过于缓慢,或者验证集准确率上升过于缓慢,说明学习率可能过大,需要减小学习率。不断尝试和调整学习率,直到找到一个适合的学
2023-08-31 23:59:08 527
原创 测试集的分割效果不好,可能由以下原因导致
测试集的分割效果不好,可能由以下原因导致测试集的分割效果不好,可能由以下原因导致:为了解决这些问题,可以尝试以下方法:测试集的分割效果不好,可能由以下原因导致:模型过拟合:如果模型在训练集上表现良好,但在测试集上表现不佳,这可能是因为模型过拟合了训练数据。过拟合可能是由于训练数据太少、模型太复杂或训练过程太长时间等原因导致的。数据分布差异:测试集和训练集的数据分布可能存在差异,例如在数据集中某些类别的样本数量不平衡,或者在测试集中有新的噪声或模式。这可能导致模型在测试集上的性能下降。测试集的分割问
2023-08-31 23:57:00 412
原创 Expected all tensors to be on the same device, but found at least two devices
原因是计算的过程中,两个不同类型的变量在一起进行运算,即一个变量存储在gpu中,一个变量存储在cpu中,两个变量的存储位置冲突,导致无法计算,把变量统一下就行。
2023-08-23 10:36:09 550
原创 使用sklearn函数对模型进行交叉验证
参考文章 https://blog.csdn.net/weixin_43803950/article/details/120894868。交叉验证(Cross-Validatio),是用于在驯良过程中对训练模型的性能和参数进行评估选择的技术。交叉验证的作用就是将数据集分割成多个自己进行多次训练,每次训练的训练集与测试机不完全相同。它的意义在于能够充分利用优先的数据集,减少数据分布不均匀以及随机性带来的模型评估误差。随机状态,需要配合shuffle参数使用。表示,要分割为多少个K子集。
2023-08-18 09:27:50 358
原创 基于Yolov5与LabelMe训练自己数据的图像分割完整流程
https://blog.csdn.net/m0_51530640/article/details/129975257 参考文章。https://blog.csdn.net/m0_51530640/article/details/129975257 参考文章。预测的话在predict中,同样修改下文件路径就可以预测图片的结果。训练可以直接运行segment中的train,需要修改下文件的路径,根据自己的需要进行修改。操作比较简单,这里就不多说了,其保存的是json格式,需要转换成yolo需要的txt.
2023-08-15 11:28:10 2664 2
原创 基于Yolov5与LabelImg训练自己数据的完整流程
首先将11行中的classes改为自己标注的类别,然后执行下代码生成相应的文件夹,接着将图像copy到JPEGImages下,labels copy到Annotations下面,再次执行一次该代码即可。首先创建一个文件夹:cocoImages, 里面分别创建2个文件夹,images用来放置标注图片, vocLabels 用来放置标注文件。如果运行的时候出现如下报错,进入虚拟环境中搜索libiomp5md.dll,删掉一个即可。下面的文件是网络训练时的参数,可以进行修改,链接里是yolov5的预训练模型。
2023-08-14 00:58:56 642
原创 基于Yolov8与LabelImg训练自己数据的完整流程
首先将11行中的classes改为自己标注的类别,然后执行下代码生成相应的文件夹,接着将图像copy到JPEGImages下,labels copy到Annotations下面,再次执行一次该代码即可。运行完成后,terminal中会出现以下提示,可以点击网址,然后从网址中打开路径中的best.onnx,即可查看网络模型。下面的文件是网络训练时的参数,可以进行修改,如果训练的次数少,没有结果,可以修改该配置里面的conf。
2023-08-13 09:24:09 3366 6
原创 LeetCode 刷题 3. 无重复字符的最长子串
链接:https://leetcode.cn/problems/longest-substring-without-repeating-characters。著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。给定一个字符串s,找出其中不包含重复字符的最长子串。来源:力扣(LeetCode)
2023-06-23 12:04:25 504
原创 LeetCode 刷题 2. 两数相加
具体而言,如果当前位置相应的两个数分别位n1,n2,进位制为carry,那么当前的和的数值为n1 + n2 + carry;其中,答案链表处的数值为(n1 + n2 + carry)mod 10, 进位值为[(n1 + n2 + carry) / 10], 即取整;其中val表示节点的值,next是指向节点的下一个节点的指针,为NULL表示该节点是最后一个节点。构造函数用于初始化节点的值和下一个节点的指针。给你两个非空的链表,表示两个非负的整数。时间复杂度:O(max(m, n)),最长的节点的个数。
2023-06-20 21:30:55 705
原创 LeetCode 刷题 1. 两数之和
首先创建一个哈希表,对于数组中的每一个x,可以现在哈希表中查询是否催在target-x,若存在,则直接返回数组与索引,若不存在,则将当前数组存储为键值key,其对应索引存储为值value。给定一个整数数组nums和目标值target,请再数值中找出和为目标值得两个整数,并返回下标值。你可以假设每个输入只对应一种答案,但不能利用这个数组中重复得元素。枚举数组中的每一个整数x,在剩余的数组中寻找target-x;需要注意的是,数组中的每一个变量只枚举一次,因此在遍历时,只需要遍历x之后的整数即可;
2023-06-18 07:45:14 102
原创 Basler 网口相机Debug中断,重连时,发生占用异常
使用pylonSDK调试程序的过程中,为了防止相机跟网卡的连接断开,默认状态下,心跳的时间是5分钟。因此当程序调试运行过程中,程序异常中止,只有五分钟之后,相机才会释放跟网卡的连接,然后进入一种可以被再次连接的状态。千兆网视觉协议的标准是通过心跳的这种方式来监测相机和网卡的连接,心跳的这种方式是设定一个时间,当超过这个时间还没有监测到相机和网卡的连接时,相机就会释放跟网卡的连接,进入一种允许相机被再次连接的状态。因此,将心跳时间修改为1000ms。
2022-09-16 13:31:00 1264
原创 SQL Server 2019 安装
2.6 选择左侧菜单栏中的安装,在切换的界面中选择"全新 SQL Server 独立安装",选择“Developer”如果忘记SQL Server的密码,可以按照下面网址进行操作,操作完后,一定要重启电脑,否则不起作用。SQL Server登录的用户名就是前面安装时默认的,密码是安装时你自己设定的密码、上面安装完之后,点击“安装 SQL Server 管理工具”,会跳出下载页面。2.1 点击主页的下载,会看到如下界面,下载Developer版本。下载完成后,双击安装,直接安装就行,没有多余的操作。
2022-09-09 21:52:43 301
原创 Day 9 - Opencv 扫描图像并访问相邻像素
Day 9 - Opencv 扫描图像并访问相邻像素在图像处理中经常有这样的函数,在计算每个函数的像素值时,会
2022-05-13 06:03:32 263
原创 Day 8 - Opencv 用迭代器扫描图像
Day 8 - Opencv 用迭代器扫描图像#include <opencv2/core.hpp>#include <opencv2/highgui.hpp>#include <random>#include <iostream>//减色函数void reduceColor(cv::Mat image, int n);int main(int argc, char** argv){ cv::Mat image = cv::imread(
2022-05-03 07:20:02 194
原创 Day 7 - Opencv 对连续图像的高速扫描
Day 7 - Opencv 对连续图像的高速扫描1.前言2. 代码3.低层次指针算法1.前言为了提高性能,可以在图像的每行末尾用额外的像素填充到某个数字的整数倍,例如8,图像处理的性能可能会提高,因此最好根据内存配置情况将数据对齐。若去掉填充后,图像仍可看作是W*H像素的长一维数组。//检查矩阵是否连续//检查行的长度(字节数)与“列的个数*单个像素的字节数”是否相等image.step == image.cols * image.elemSize();还有另一种方式也可以检查图像矩阵是否被
2022-05-02 12:49:20 2464
ubuntu14.04 caffe环境的配置
2017-10-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人