证明:实对称矩阵中,属于不同特征值的特征向量相互正交

证明:实对称矩阵中,属于不同特征值的特征向量相互正交.

---------------------------------------------------------------------------------------------------

AP1PAP2P,其中A为实对称矩阵,λ1、λ2A的不同的特征值,P分别为对应的特征向量 

PT(AQ) = PT2Q) = λ2PTQ   (1)

(PTA)Q = (PTAT)Q = (AP)TQ = (λ1P)TQ = λ1PTQ   (2)

因为PT(AQ)=(PTA)Q

由(1) - (2)得:

PT(AQ) - (PTA)Q = (λ1 - λ2)PTQ 

即 0 = (λ1 - λ2)PTQ

又由于λ1 ≠ λ2,所以PTQ=0

即<P, Q> = 0,从而P相互正交

转载于:https://my.oschina.net/JiamingMai/blog/366093

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值