【莫队算法】【权值分块】poj2104 K-th Number / poj2761 Feed the dogs

先用莫队算法保证在询问之间转移的复杂度,每次转移都需要进行O(sqrt(m))次插入和删除,权值分块的插入/删除是O(1)的。

然后询问的时候用权值分块查询区间k小值,每次是O(sqrt(n))的。

所以总共的复杂度是O(m*(sqrt(n)+sqrt(m)))的。

常数极小。

别的按权值维护的数据结构无法做到O(1)地插入删除。

poj2104 的输出优化 别忘了处理负数。

完爆主席树,这份代码目前在 poj2761 上 Rank1

RankRun IDUserMemoryTimeLanguageCode LengthSubmit Time
113702017(2)lizitong4056K579MSG++2455B2014-12-10 13:00:22
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int Num,CH[12],f,c;
inline void R(int &x){
    c=0;f=1;
    for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
    for(x=0;c>='0'&&c<='9';c=getchar())(x*=10)+=(c-'0');
    x*=f;
}
inline void P(int x){
    if(x<10)putchar(x+'0');
    else{P(x/10);putchar(x%10+'0');}
}
struct Point{int v,p;}t[100001];
struct Ask{int l,r,k,p;}Q[5001];
int n,m,a[100001],ma[100001],en,num[100001],num2[100001];
int l[330],r[330],sumv[330],b[100001],sum=1,anss[5001];
bool operator < (const Point &a,const Point &b){return a.v<b.v;}
bool operator < (const Ask &a,const Ask &b)
{return num2[a.l]!=num2[b.l] ? num2[a.l]<num2[b.l] : a.r<b.r;}
void Mo_Make_Block()
{
	int sum=1,sz=sqrt(n); if(!sz) sz=1;
	for(;sum*sz<n;++sum)
	  {
	  	int r=sum*sz;
	  	for(int i=(sum-1)*sz+1;i<=r;++i) num2[i]=sum;
	  }
	for(int i=(sum-1)*sz+1;i<=n;++i) num2[i]=sum;
}
void Val_Make_Block()
{
	int sz=sqrt(en); if(!sz) sz=1;
	for(;sum*sz<en;++sum)
	  {
	  	l[sum]=r[sum-1]+1; r[sum]=sum*sz;
	  	for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
	  }
	l[sum]=r[sum-1]+1; r[sum]=en;
	for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
}
void Insert(const int &x){++b[x]; ++sumv[num[x]];}
void Delete(const int &x){--b[x]; --sumv[num[x]];}
int Kth(const int &x)
{
    int cnt=0;
    for(int i=1;;i++)
      {
        cnt+=sumv[i];
        if(cnt>=x)
          {
            cnt-=sumv[i];
            for(int j=l[i];;j++)
            {cnt+=b[j]; if(cnt>=x) return j;}
          }
      }
}
int main()
{
	R(n); R(m);
	for(int i=1;i<=n;++i) {R(t[i].v); t[i].p=i;}
	sort(t+1,t+n+1);
	ma[a[t[1].p]=++en]=t[1].v;
	for(int i=2;i<=n;++i)
	  {
	  	if(t[i].v!=t[i-1].v) ++en;
	  	ma[a[t[i].p]=en]=t[i].v;
	  }
	Val_Make_Block();
	for(int i=1;i<=m;++i)
	  {
	  	R(Q[i].l); R(Q[i].r); R(Q[i].k);
	  	Q[i].p=i;
	  }
	Mo_Make_Block();
	sort(Q+1,Q+m+1);
	for(int i=Q[1].l;i<=Q[1].r;++i) Insert(a[i]);
	anss[Q[1].p]=ma[Kth(Q[1].k)];
	for(int i=2;i<=m;++i)
      {
        if(Q[i].l<Q[i-1].l) for(int j=Q[i-1].l-1;j>=Q[i].l;--j) Insert(a[j]);
        else for(int j=Q[i-1].l;j<Q[i].l;++j) Delete(a[j]);
        if(Q[i].r<Q[i-1].r) for(int j=Q[i-1].r;j>Q[i].r;--j) Delete(a[j]);
        else for(int j=Q[i-1].r+1;j<=Q[i].r;++j) Insert(a[j]);
        anss[Q[i].p]=ma[Kth(Q[i].k)];
      }
    for(int i=1;i<=m;++i) P(anss[i]),puts("");
	return 0;
}

 

转载于:https://www.cnblogs.com/autsky-jadek/p/4155210.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值