先用莫队算法保证在询问之间转移的复杂度,每次转移都需要进行O(sqrt(m))次插入和删除,权值分块的插入/删除是O(1)的。
然后询问的时候用权值分块查询区间k小值,每次是O(sqrt(n))的。
所以总共的复杂度是O(m*(sqrt(n)+sqrt(m)))的。
常数极小。
别的按权值维护的数据结构无法做到O(1)地插入删除。
poj2104 的输出优化 别忘了处理负数。
完爆主席树,这份代码目前在 poj2761 上 Rank1。
Rank | Run ID | User | Memory | Time | Language | Code Length | Submit Time |
---|---|---|---|---|---|---|---|
1 | 13702017(2) | lizitong | 4056K | 579MS | G++ | 2455B | 2014-12-10 13:00:22 |
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int Num,CH[12],f,c;
inline void R(int &x){
c=0;f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c>='0'&&c<='9';c=getchar())(x*=10)+=(c-'0');
x*=f;
}
inline void P(int x){
if(x<10)putchar(x+'0');
else{P(x/10);putchar(x%10+'0');}
}
struct Point{int v,p;}t[100001];
struct Ask{int l,r,k,p;}Q[5001];
int n,m,a[100001],ma[100001],en,num[100001],num2[100001];
int l[330],r[330],sumv[330],b[100001],sum=1,anss[5001];
bool operator < (const Point &a,const Point &b){return a.v<b.v;}
bool operator < (const Ask &a,const Ask &b)
{return num2[a.l]!=num2[b.l] ? num2[a.l]<num2[b.l] : a.r<b.r;}
void Mo_Make_Block()
{
int sum=1,sz=sqrt(n); if(!sz) sz=1;
for(;sum*sz<n;++sum)
{
int r=sum*sz;
for(int i=(sum-1)*sz+1;i<=r;++i) num2[i]=sum;
}
for(int i=(sum-1)*sz+1;i<=n;++i) num2[i]=sum;
}
void Val_Make_Block()
{
int sz=sqrt(en); if(!sz) sz=1;
for(;sum*sz<en;++sum)
{
l[sum]=r[sum-1]+1; r[sum]=sum*sz;
for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
}
l[sum]=r[sum-1]+1; r[sum]=en;
for(int i=l[sum];i<=r[sum];++i) num[i]=sum;
}
void Insert(const int &x){++b[x]; ++sumv[num[x]];}
void Delete(const int &x){--b[x]; --sumv[num[x]];}
int Kth(const int &x)
{
int cnt=0;
for(int i=1;;i++)
{
cnt+=sumv[i];
if(cnt>=x)
{
cnt-=sumv[i];
for(int j=l[i];;j++)
{cnt+=b[j]; if(cnt>=x) return j;}
}
}
}
int main()
{
R(n); R(m);
for(int i=1;i<=n;++i) {R(t[i].v); t[i].p=i;}
sort(t+1,t+n+1);
ma[a[t[1].p]=++en]=t[1].v;
for(int i=2;i<=n;++i)
{
if(t[i].v!=t[i-1].v) ++en;
ma[a[t[i].p]=en]=t[i].v;
}
Val_Make_Block();
for(int i=1;i<=m;++i)
{
R(Q[i].l); R(Q[i].r); R(Q[i].k);
Q[i].p=i;
}
Mo_Make_Block();
sort(Q+1,Q+m+1);
for(int i=Q[1].l;i<=Q[1].r;++i) Insert(a[i]);
anss[Q[1].p]=ma[Kth(Q[1].k)];
for(int i=2;i<=m;++i)
{
if(Q[i].l<Q[i-1].l) for(int j=Q[i-1].l-1;j>=Q[i].l;--j) Insert(a[j]);
else for(int j=Q[i-1].l;j<Q[i].l;++j) Delete(a[j]);
if(Q[i].r<Q[i-1].r) for(int j=Q[i-1].r;j>Q[i].r;--j) Delete(a[j]);
else for(int j=Q[i-1].r+1;j<=Q[i].r;++j) Insert(a[j]);
anss[Q[i].p]=ma[Kth(Q[i].k)];
}
for(int i=1;i<=m;++i) P(anss[i]),puts("");
return 0;
}