城市地区道路网的简单的阈值分割。采用的是单ostu(最佳阈值分割)算法,废话少说,如果不太清楚该算法,请参考文献[1]中的图像分割这一章的介绍。程序直接运行的效果如下。
直接附加代码,希望对大家有一些益处,节约你的时间:
% 最大类方差法实现自适应图像阈值分割 % This implements is implemented by WENG, All rights reserved % Copy Rights (c) WENG % 2016-3-30 1639 clear;clc;close all; warning off; %#ok<WNOFF> IMG = imread('steger_perfect_1_rg.tif');% fdoa1_rs1_rg.tif IMG_gray=double(rgb2gray(IMG)); [M,N]=size(IMG_gray); gray_level=256; % Histgram Histgram_normal=zeros(256,1);% value span, 1~256 for i_level=1:256, Histgram_normal(i_level)=sum(sum(IMG_gray==(i_level+1))); end Histgram_normal=Histgram_normal/(M*N); % histgram normalize m_overall=0; for m=1:gray_level,m_overall=m_overall+(m-1)*Histgram_normal(m);end sigma_max=0; sigma_B=zeros(gray_level,1); for i=1:gray_level, threshold=i-1; % calculate the number of the two class, the number is 0~1 num1=0; for m=1:threshold-1 num1=num1+Histgram_normal(m); end num2=1-num1; % cal m1, m2 m1=0; m2=0; for m=1:gray_level if m<threshold m1=m1+(m-1)*Histgram_normal(m); else m2=m2+(m-1)*Histgram_normal(m); end end % calculate the std betweent the two classes m1=m1/num1; m2=m2/num2; sigma1=num1*(m1-m_overall)^2+num2*(m2-m_overall)^2; % save and update sigma_B(i)=sigma1; if sigma1>sigma_max optical_T=threshold; sigma_max=sigma1; end end Th_optical=optical_T; Th_matalb=graythresh(IMG_gray)*255;%matlab函数求阈值 fprintf(1,'The otsu threshold and Threshold calculate by graythresh are:\n %.1f [best], %.1f\n\n',Th_optical,Th_matalb); % visual the result Threshold_Optimal_IMG=zeros(M,N); Threshold_graythresh_IMG=zeros(M,N); Threshold_Optimal_IMG(IMG_gray>Th_optical)=1; Threshold_graythresh_IMG(IMG_gray>Th_matalb)=1; figure,subplot(2,2,1);imshow(IMG,[]);title('Ori color image'); subplot(2,2,2);imshow(IMG_gray,[]);title('Ori gray image'); subplot(2,2,3);imshow(Threshold_graythresh_IMG,[]);title('Threshold calculated by graythresh'); subplot(2,2,4);imshow(Threshold_Optimal_IMG,[]);title('Threshold calculated by ostu'); figure,subplot(1,2,1); hold on; plot(1:gray_level,sigma_B);title('The two TH marked on \sigma array'); xlabel('Th'); ylabel('\sigma_B'); plot(Th_optical+1,sigma_B(Th_optical+1),'xg','MarkerSize',8,'LineWidth',2); text(Th_optical+1,sigma_B(Th_optical+1)-50,'otsu threshold'); plot(Th_matalb+1,sigma_B(Th_matalb+1),'^r','MarkerSize',8,'LineWidth',2); text(Th_matalb+1,sigma_B(Th_matalb+1)-50,'graythresh calculated threshold'); hold off; subplot(1,2,2);plot(1:gray_level,Histgram_normal);title('Gray image Histgram'); hold on; plot(Th_optical+1,Histgram_normal(Th_optical+1),'xg','MarkerSize',8,'LineWidth',2); text(Th_optical+1,Histgram_normal(Th_optical+1)-50,'otsu threshold'); plot(Th_matalb+1,Histgram_normal(Th_matalb+1),'^r','MarkerSize',8,'LineWidth',2); text(Th_matalb+1,Histgram_normal(Th_matalb+1)-50,'graythresh calculated threshold'); hold off; % Image that can be classified by the threshold evaluate Sigma_G=std(IMG_gray(:)); eta_ostu=sigma_B(Th_optical+1)/Sigma_G; eta_matlab=sigma_B(Th_matalb+1)/Sigma_G; fprintf(1,'The separability of ostu and matlab graythresh func respectively are:\n%.3f, %.3f\n',eta_ostu,eta_matlab);
参考文献
[1] (美)冈萨雷斯(Gonzalez, R.C.), (美)伍兹(Woods,等. 数字图像处理[M]. 电子工业出版社, 2013.