自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(208)
  • 资源 (18)
  • 收藏
  • 关注

原创 图像(目标检测、人体姿态)算法部署代码+详细解释:

仰卧起坐 :选取的是12,24,26,最大角度改为30-130即可。

2023-10-31 09:16:03 1217

原创 目标检测类项目数据集汇总

目标检测是计算机视觉领域的重要任务,其目标是在图像或视频中识别并定位特定物体的位置。为了训练和评估目标检测算法的性能,研究人员和开发者经常会使用一些广泛应用的数据集。以下是一些常用的十类目标检测数据集,这些数据集提供了丰富的图像资源和相关的标注信息,可以帮助研究人员和开发者进行目标检测算法的训练和测试。

2023-10-27 09:21:01 926 1

原创 AI Agent智能应用从0到1定制开发 (包含全部教学视频和全部源码,附链接)

在AI2.0时代,应用开发者面临着前所未有的机遇。这一章节将探讨如何通过整合不同的人工智能模型来创建更加强大、智能且具有创新性的应用。我们将分析多模型应用在各个行业中的成功案例,包括医疗、金融、教育等领域。同时,本章还将讨论如何克服在开发过程中可能遇到的挑战,如数据隐私保护、算法偏见等问题,以及如何利用开放源代码和云计算资源来加速开发进程。

2024-03-29 09:53:11 258 4

原创 实战whisper第二天:直播语音转字幕(全部代码和详细部署步骤)

基于Whisper的实时直播语音转录或翻译是一项使用OpenAI的Whisper模型实现的技术,它能够实时将直播中的语音内容转录成文本,甚至翻译成另一种语言。这一过程大致分为三个步骤:捕获直播音频流、语音识别(转录)以及翻译(如果需要)。下面详细解释其原理和意义。

2024-03-21 17:25:07 687 1

原创 Umi-OCR 部署,并通过postman实现访问(全部代码和详细部署步骤)

OCR是“Optical Character Recognition”(光学字符识别)的缩写。这是一种技术,用于从图像(如扫描的文档、照片中的文本、屏幕截图等)中识别并提取文字。:OCR可以识别印刷体和手写文字,并将其转换为机器编码的文本,例如ASCII或Unicode。:OCR帮助将纸质文档转换成可编辑和可搜索的电子格式,这是数字化办公和档案管理的重要步骤。:通过OCR,可以自动化许多文档处理任务,例如数据入口、文件分类和信息提取。

2024-03-19 10:15:55 2428

原创 TTS语音合成部署服务器,可远程访问(全部代码和详细部署步骤)

TTS(Text-to-Speech,文本转语音)是一种将书面文本转换成口头语言输出的技术。用户输入文本,TTS系统将这些文本“读”出来,通常是通过合成语音的形式。这种技术可以使计算机、智能手机、平板电脑和其他设备通过语音与用户交流。随着技术的发展,TTS的自然度和可理解性在不断提高,使得它在我们日常生活中的应用越来越广泛。

2024-03-19 09:19:24 199

原创 GPT-SoVITS语音合成服务器部署,可远程访问(全部代码和详细部署步骤)

此外,项目还提供了一些集成工具,包括声音伴奏分离,自动训练集分割,中文ASR和文本标签,帮助初学者创建训练数据集和 GPT/SoVITS 模型。Zero-shot TTS 可以让用户输入5秒钟的语音样本并立即体验转换后的语音,而 Few-shot TTS 则可以通过使用仅一分钟的训练数据进行模型微调,从而提高语音相似度和真实性。WebUI 工具:集成工具包括声音伴奏分离,自动训练集分割,中文ASR和文本标签,帮助初学者创建训练数据集和GPT/SoVITS模型。

2024-03-18 10:12:35 854

原创 实战whisper语音识别第一天,部署服务器,可远程访问,实时语音转文字(全部代码和详细部署步骤)

Whisper是OpenAI于2022年发布的一个开源深度学习模型,专门用于语音识别任务。它能够将音频转换成文字,支持多种语言的识别,包括但不限于英语、中文、西班牙语等。Whisper模型的特点是它在多种不同的音频条件下(如不同的背景噪声水平、说话者的口音、语速等)都能实现高准确率的语音识别,这得益于它在训练过程中使用的大量多样化的音频数据。

2024-03-18 10:08:05 607 1

原创 Stable-Diffusion ubuntu服务器部署,报错解决方法(小白教程)

Stable Diffusion是一个深度学习模型,专注于生成高质量的图像。它由CompVis团队与Stability AI合作开发,并在2022年公开发布。这个模型使用文本提示(text prompts)生成详细、逼真的图像,是目前人工智能图像生成领域的一大突破。它属于文本到图像(Text-to-Image)生成模型的范畴,使用了一种称为潜在扩散模型(Latent Diffusion Model, LDM)的技术。

2024-02-28 11:32:40 1621

原创 C++实战Opencv第二天——色彩空间转换函数和opencv中图像对象创建与赋值(从零开始,保姆教学)

OpenCV是一个强大的计算机视觉库,使用C++作为主要编程语言,对于图像处理和计算机视觉领域具有重要意义。其提供了丰富的功能和算法,使得开发者能够快速实现各种图像处理和计算机视觉应用。OpenCV C++为图像处理和计算机视觉领域的开发者提供了一个高效、稳定的工具。通过OpenCV的函数库和模块,可以方便地进行图像读取、保存、调整大小、滤波、边缘检测等常见的图像处理操作。而且,OpenCV还支持各种图像格式,包括JPEG、PNG、BMP等,使得开发者能够处理不同类型的图像数据。

2024-02-04 15:24:31 1139

原创 PaddleOCR封装,在线服务化部署实战(python部署,超新手教程)

OCR,即光学字符识别(Optical Character Recognition),是一种将图像中的文字转换为机器编码文字的技术。这种技术可以识别和转换各种来源的文本,包括扫描文档、照片中的文字、手写笔记等。光学字符识别(OCR)技术在实际应用场景中的作用是多方面的。首先,OCR技术在文档数字化方面扮演着关键角色。通过将纸质文档转换为电子格式,如PDF或Word文档,OCR不仅促进了信息的保存和共享,也极大地提高了数据检索的效率。这一过程对于历史档案的保存尤为重要,同时也在日常办公环境中普遍应用。

2024-01-22 17:23:22 1507

原创 yolov8实战第六天——yolov8 TensorRT C++ 部署——(踩坑,平坑,保姆教程)

TensorRT 通过优化深度学习模型来提高推理速度,减少延迟。这对于实时处理应用(如视频分析、机器人导航等)至关重要。:TensorRT 优化了模型以在GPU上高效运行,这意味着更低的内存占用和更高的吞吐量。对于资源受限的环境或在多任务并行处理的情况下,这是一个显著优势。:C++ 是一种跨平台语言,配合 TensorRT,可以在多种硬件和操作系统上部署深度学习模型,包括嵌入式设备和服务器。:TensorRT 提供了精确的数学和统计方法来减少浮点运算误差,这对于确保深度学习应用的准确性和稳定性至关重要。

2024-01-17 17:42:07 3492

原创 C++实战Opencv第一天——win11下配置vs,opencv环境和运行第一个c++代码(从零开始,保姆教学)

(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了大量的通用算法和功能,用于处理图像和视频数据。通常提供比 Python,对于需要高性能处理的任务(如C++ 提供更细致的和。这对于优化大型应用或在内存限制较大的环境(如)中运行非常重要。:包括滤波、色彩空间转换、图像阈值设定、边缘检测、几何变换(如旋转、缩放)等。:使用特定算法(如哈尔特征级联分类器)来识别和追踪视频中的人脸。

2024-01-16 10:57:54 870 1

原创 yolov8实战第五天——yolov8+ffmpeg实时视频流检测并进行实时推流——(推流,保姆教学)

YOLOv8是YOLO目标检测算法的一个变种。它在YOLOv4的基础上进行了一些改进,如使用更大的图像尺寸、更深的网络结构、更多的训练数据等,从而获得更好的检测精度和更快的检测速度。实时视频流目标检测是一种非常有用的应用场景。例如,在视频监控系统中,我们需要对视频流进行实时分析和检测,以便及时发现异常事件和行为。另外,实时视频流目标检测也可以用于自动驾驶、无人机等领域。

2024-01-05 11:10:33 7904 13

原创 yolov8实战第四天——yolov8图像分类 && ResNet50图像分类(保姆式教程)

图像分类是指将输入的图像自动分类为不同的类别。它是计算机视觉领域的一个重要应用,可以用于人脸识别、物体识别、场景分类等任务。在实际应用中,可以使用各种深度学习框架(例如 TensorFlow、PyTorch、Keras 等)来构建图像分类模型,并使用各种数据增强技术(例如旋转、缩放、裁剪等)来增加数据集的多样性和数量。如果你想学习如何使用深度学习框架来构建图像分类模型,可以参考一些在线教程、书籍或者 MOOC。

2023-12-29 18:00:52 5656 15

原创 yolov8实战第三天——yolov8TensorRT部署(python推理)(保姆教学)

TensorRT是一种,可以为深度学习应用提供的部署推理。TensorRT可用于对超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。

2023-12-26 17:13:42 4786 15

原创 算法工程师-机器学习面试题总结(8)

PCA(Principal Component Analysis,主成分分析)是一种常用的数据降维技术,其主要思想是通过线性变换将原始数据映射到一个新的坐标系中,使得映射后的数据在新的坐标系下具有最大的方差,从而实现数据的降维和特征提取。在PCA中,主成分(Principal Component)是指数据在新的坐标系中的方向。第一个主成分是原始数据方差最大的方向;第二个主成分是与第一个主成分正交且方差次大的方向;以此类推,第n个主成分是与前n-1个主成分正交且方差第n大的方向。

2023-12-16 13:54:26 135

原创 算法工程师-机器学习面试题总结(7)

k-means算法的损失函数被称为“平方误差和”,通常用于衡量聚类的效果。具体定义如下:假设有n个样本点和k个聚类中心。令x_i表示第i个样本点,c_j表示第j个聚类中心。那么每个样本点x_i到其所属聚类中心c_j的距离可以用欧氏距离表示为通过聚类中心与各个样本点的距离,我们可以定义平方误差和(SSE)为:其中,w_{ij}为样本点x_i与聚类中心c_j之间的隶属度权重,表示样本点x_i对聚类中心c_j的归属程度。

2023-12-16 13:53:50 378

原创 yolov8实战第二天——yolov8训练过程、结果分析(保姆式解读)

以逻辑回归举例,逻辑回归的输出是一个 0 到 1 之间的概率数字,因此,如果我们想要根据这个概率判断用户好坏的话,我们就必须定义一个阈值。因此,对于阈值为 0.5 的情况下,我们可以得到相应的一对查准率和查全率。选取合适的阈值点要根据实际需求,比如我们想要高的查全率,那么我们就会牺牲一些查准率,在保证查全率最高的情况下,查准率也不那么低。因此,为了找到一个最合适的阈值满足我们的要求,我们就必须遍历 0 到 1 之间所有的阈值,而每个阈值下都对应着一对查准率和查全率,从而我们就得到了 PR 曲线。

2023-12-15 17:05:31 11672 23

原创 yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)

YOLOv8是一种基于深度神经网络的目标检测算法,它是YOLO(You Only Look Once)系列目标检测算法的最新版本。YOLOv8的主要改进包括:更高的检测精度:通过引入更深的卷积神经网络和更多的特征层,YOLOv8可以在保持实时性的同时提高检测精度。更快的检测速度:通过对模型进行优化,YOLOv8可以在不降低检测精度的情况下提高检测速度。支持更多的检测任务:除了传统的物体检测任务之外,YOLOv8还支持人脸检测、车辆检测等更多的检测任务。

2023-12-15 16:29:21 8170 6

原创 算法工程师-机器学习面试题总结(6)

Boosting的基分类器是通过迭代训练得到的,每个基分类器都会在前一个基分类器的基础上进行学习。1. Bagging:Bagging是通过对训练集进行有放回的重采样,产生多个子样本,然后分别用这些子样本训练多个独立的分类器,再通过投票或平均的方式来得到最终的预测结果。Bagging是Bootstrap Aggregating的缩写,它的思想是通过对训练集进行有放回的采样,产生多个子样本,然后分别用这些子样本训练多个独立的分类器,最终通过对这些分类器的结果进行投票或平均,得到最终的预测结果。

2023-12-08 09:50:18 232

原创 算法工程师-机器学习面试题总结(5)

场感知分解机器(Field-aware Factorization Machine,以下简称FFM)是对因子分解机(Factorization Machine,以下简称FM)的改进和扩展。FM是一种基于线性模型和因子分解的机器学习模型,用于解决稀疏数据和高维特征的问题。它通过对特征间的交互进行建模,可以捕捉到特征之间的非线性关系。而FFM在FM的基础上,对特征之间的交互进行了更细粒度的建模。

2023-12-08 09:49:19 326

原创 算法工程师-机器学习面试题总结(4)

Kd树(K-dimensional tree)是一种用于对k维空间中的数据进行分割和组织的数据结构。它在很多应用中被用来进行高效的最近邻搜索。建立Kd树的过程如下:1. 选择一个数据点作为根节点。2. 根据当前维度选择一个切分超平面,将数据集分割成两个子集。3. 递归地在每个子集中构建子树,直到子集只包含一个数据点。4. 根据当前维度和切分超平面的位置,将该节点标记为左子节点或右子节点。在Kd树中搜索最近节点的过程如下:1. 从根节点开始,找到目标点所属区域的子树。

2023-12-06 09:25:56 285

原创 算法工程师-机器学习面试题总结(3)

广义线性模型(Generalized Linear Model,GLM)是一种统计学习方法,可以用于建立描述响应变量和预测变量之间关系的模型。与传统的线性回归模型相比,广义线性模型拓展了线性模型的适用范围,可以处理更广泛的数据类型和响应变量的分布特性。在广义线性模型中,响应变量不再局限于连续的数值型数据,也可以是二元数据、计数数据、多分类数据等。同时,广义线性模型引入了称为“联系函数”(Link Function)的函数来建立预测变量和响应变量之间的关系。

2023-12-06 09:15:23 264

原创 算法工程师-机器学习面试题总结(2)

序号编码(Ordinal Encoding)是一种将类别型数据转换为整数序列的编码方式。每个类别被赋予一个唯一的整数值,这些整数值是按照类别的自然顺序进行分配的。序号编码通常适用于具有内在有序性的类别型特征,例如衣服尺寸(小、中、大)、教育程度(小学、初中、高中、大学)等。One-Hot编码是一种将类别型数据编码为二进制向量的方法。每个类别被表示为一个长度为类别总数的向量,其中只有一个位置为1,其他位置为0。这种编码方式适用于没有内在顺序的类别型特征,如颜色(红、绿、蓝)、国家(中国、美国、英国)等。

2023-12-04 11:11:14 142

原创 算法工程师-机器学习面试题总结(1)

损失函数是在机器学习和优化算法中使用的一种衡量模型预测结果与真实值之间差异的函数。其目标是最小化模型的预测误差,从而提高模型的性能。定义合理的损失函数需要考虑以下几个因素:任务类型:不同的任务(如回归、分类、聚类等)需要选择不同类型的损失函数。比如,在回归问题中,常用的损失函数有均方误差(Mean Squared Error)和平均绝对误差(Mean Absolute Error);在分类问题中,交叉熵损失函数(Cross-Entropy Loss)常被使用。模型目标:损失函数应该与模型的目标一致。

2023-12-04 11:04:59 473

原创 机器学习入门(第六天)——支持向量机(升维打击)

SVM使用间隔最大化思想构造最优超平面。构造出来的超平面使得其与最近的点的距离最大。SVM也可划分非线性数据集。它通过高维中的线性超平面再低维中的投影来完成非线性的划分。因此从直观上来讲,我们的模型必定有一个升维的操作。这是总体的概念。SummarySVM首先从最大间隔出发,设计了可构造最优超平面的线性模型。考虑到存在噪音或有部分点让人很为难,添加了软间隔。变成了具有软间隔功能的线性模型。通过对数据的升维,使得模型变成了非线性。可以用于非线性数据集。

2023-11-30 16:48:11 957

原创 机器学习入门(第五天)——决策树(每次选一边)

决策树的核心思想:以树结构为基础,每个节点对某特征进行判断,进入分支,直到到达叶节点。决策树构造的核心思想:让信息熵快速下降,从而达到最少的判断次数获得标签。判断信息熵下降速度的方法:信息增益。构建决策树算法:ID3(使用信息增益)、C4.5(使用使用信息增益比)。信息增益会导致节点偏向选取取值角度的特征的问题。关于第5点的补充,统计学习和西瓜书都是给的这个解释,但还有另一种解释,就是信息增益导致大数问题——>概率是否准确的问题。

2023-11-30 14:50:54 150

原创 机器学习入门(第四天)——朴素贝叶斯

条件概率公式:,表示在已发生事件B的情况下,事件A发生的概率。使用条件概率公式逐步导出最后参数估计的步骤需牢记。后续会遇到很多类似的推导过程,一般都是先各种替换变复杂最后简化。另,公式存在一点点问题,如公式的分母可能为0。

2023-11-30 14:31:43 85

原创 yolov4、yolov5优化策略

四张图像拼接成一张进行训练,现在一个batch相当于以前4个batch。:用随机值或训练集的平均像素值替换图像的区域。:引入噪音点来增加难度。:(之前的dropout是随机选择点,现在吃掉一个区域)。自觉不错(过拟合),让它别太自信,标签01改为,0.95,0.05,效果使用之后效果分析(右图):簇内更紧密,簇间更分离。:在目标检测中,NMS用于通过选择具有最高置信度得分的框来删除冗余的边界框。然而,当检测算法产生具有类似置信度分数的重叠框时,这有时会导致。

2023-11-29 14:29:55 396

原创 区分(GIOU、DIOU、CIOU)(正则化、归一化、标准化)

3、 图x3分类全部是正确的,但是看着这副图片,明显觉得过了,连人妖都区分的出来,可想而知,学习的时候需要更多的参数项,甚至将生殖器官的形状、喉结的大小、有没有胡须特征等都作为特征取用了,总而言之。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。DIoU考虑了重叠面积和中心点距离,当目标框包裹预测框的时候,直接度量2个框的距离,因此DIoU收敛的更快,中我们使用到的特征非常多(一般而言,机器学习的过程中,很多特征是可以被丢弃掉的)。的N特别的大,因为需要提供的特征多,或者提供的。

2023-11-29 10:50:55 284

原创 机器学习入门(第三天)——K近邻(物以类聚)

K近邻思想:物以类聚K近邻没有显式的训练过程不需要先训练再预测,直接得到结果距离度量欧式距离:两点之间直线曼哈顿距离:城市街区距离切比雪夫距离:棋盘距离K近邻的思想:物以类聚K近邻没有显式的训练过场距离度量:欧式距离、曼哈顿距离、切比雪夫距离分类方式:多数表决规则。

2023-11-22 16:26:48 395

原创 机器学习入门(第二天)——感知机

每个算法都是为了解决一类问题,或者说解决之前的问题所创造出来的,而感知机,在解决一类问题的时候也暴露了很多问题,变相的推动了以后的算法的改进方向。现在有一盘红豆和绿豆,怎么把红豆和绿豆分开来当红豆和绿豆放在一起时,它们却能自己分开来,为什么呢?我们怎么区分呢,假设我们随意花如下的线这样是不是就完美的区分开来了,完美解决。那么程序怎么知道x和y都大于0的豆是红豆呢?或者说,它是怎么学会这个规则的?那是不是只要一条直线不分错一个点,或者说尽可能的少分错点,那就是一条好的直线。

2023-11-22 16:11:03 97

原创 机器学习入门(第一天)——统计学习方法

统计学习路线:设计模型->训练->预测监督学习与非监督学习的联系与区别统计学习三要素:模型、策略、算法模型的评估:训练误差、验证误差、测试误差正则化与交叉严重泛化能力:泛化误差上界生成模型与判别模型的联想与区别分类问题:准确率、精确率、召回率、F1值标准问题回归问题:输出为连续的值。

2023-11-22 15:51:18 158

原创 深度学习入门(第四天)——递归神经网络与词向量原理解读

常规神经网络并不能考虑时间序列的特征(比如前天+昨天+今天或者带有前后关联的特征),现在每个特征都是独立考虑的,那么如果有这样的特征,网络应该怎么学呢而递归递归网络hidden这里的转回箭头,表示训练完第一个X后,再拿回来去训练第二个X,即前一次训练的结果对后一次的训练结果产生影响。类似现在有X0、X1、X2 ... Xt,假设X0就是本月的1号,X1就是2号以此类推,Xt就是昨天,这样是不是就是一个时间序列。X输入后有了h,h是中间的结果,每个h保证能联合前一个的h。

2023-11-17 09:09:48 174

原创 深度学习入门(第三天)——卷积神经网络

pad表示+1边缘,原本数据只有蓝色背景的部分(中间部分),而周围都是边缘增加的0,为什么这么做,滑动窗口时,边缘数据点明显滑动少,中间多,那能说明中间的就重要吗,为了使边缘的数据点也滑动多几次,就增加了这个边缘填充。先把图像进行分割(最左边),分割成多个小区域,提取其中一个小区域(第二个5×5×3),蓝色图的右下角3×3矩阵,大字体的值是X的值,而小字体的值是w权重,会不断循环获取最优的w权重和对应的值,并输出右边绿色的14(特征值)。移动一个步长,得到红色绿色特征值,移动的步长越小,特征值越多。

2023-11-16 11:25:54 223

原创 深度学习入门(第二天)——走进深度学习的世界 神经网络模型

简单的例子:如何让 f 值更小,就是改变x、y、z,而损失函数也是这样,那么我们分别求偏导,则能得出每个值对结果的影响梯度是一步一步传的。input layer输入层:比如输入X,有多少个x即有多少个input,比如前面的猫有3千多像素点,那么就有3千多个“圈”进行input。hidden layer 1:指将X做了某些变换,且每个圈与前者的全部圈都连接,即是全连接,为什么多了1个圈,是表示可能会在原始特征的基础上做变换,变成4个特征。具体如:假设X输入的是年龄,第一圈表示对年龄做平方,第二个圈表示将年

2023-11-16 11:05:28 253

原创 深度学习入门(第一天)——深度学习必备知识点

人工智能、机器学习、深度学习的区别于联系机器学习的流程:数据提取特征工程建立模型评估与应用特征工程可以说是建模过程中,最重要的部分。既然特征工程是最重要的,常规我们会做各种各样的特征,如聚合统计、交叉等,那有没有一种方法,它可以去选择重要的特征。而深度学习可以说是最接近人工智能这一概念的,因为它解决了机器学习中“人工的”问题,如人工的选择特征、选择算法等。深度学习最大的亮点,就是解决特征工程的人工问题。特征工程的作用:数据特征决定了模型的上限预处理和特征提取是最核心的。

2023-11-16 10:52:44 261 1

原创 阿里达摩院开源DAMO-YOLO

DAMO-YOLO是一个兼顾速度与精度的目标检测框架,其效果超越了目前的一众YOLO系列方法,在实现SOTA的同时,保持了很高的推理速度。DAMO-YOLO是在YOLO框架基础上引入了一系列新技术,对整个检测框架进行了大幅的修改。具体包括:基于NAS搜索的新检测backbone结构,更深的neck结构,精简的head结构,以及引入蒸馏技术实现效果的进一步提升。模型之外,DAMO-YOLO还提供高效的训练策略以及便捷易用的部署工具,能够快速解决工业落地中的实际问题!

2023-11-14 11:19:53 141

原创 智慧渔业捕捞计数项目设计书

本项目在重庆市长寿区长寿湖水域湖面安装装置设备进行捕捞,长寿湖全水域隶属于重庆市长寿区浩湖渔业有限公司(国有控股企业)管辖的天然养殖水域,养殖水域中所有的水产品均属国有资产,受法律保护。浩湖渔业有限公司旨在保证长寿湖鱼类自然繁殖,保障渔业资源生态平衡和休闲渔业健康可持续发展,维护长寿湖鱼类自然生态平衡。2022年7月初,重庆市长寿区浩湖渔业有限公司的捕捞队在长寿湖进行了新一轮的捕鱼作业。在捕捞装运过程中,使用机械化设备代替人工,提高了工作效率,减少了产品损耗。

2023-11-14 10:25:07 410

基于BoTNet-Transformer的改进YOLOv7的水果识别系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于RCS-OSA改进YOLOv7的青蛙活动量监测预警系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

改进YOLOv7的早餐价格检测系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

车道线检测,通过YOLOV7与DeepLabv3。.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于改进YOLOv7的玉米果穗健康度检测系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于CBAM空间注意力机制改进YOLOv5的公路智能巡检系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于协同双注意力机制CDAM2改进YOLOv7的工地安全帽佩戴检测系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于yolov5+CRNN的中文车牌识别系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于yolov5的细胞检测系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于 YOLOv8 和 LPRNet 的车牌识别系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于安全帽检测和禁入危险系统,附 YOLOv5 训练自己的数据集超详细教程.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

智能中药房系统 Flask+Vue+Yolov5.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

中山大学深度学习大作业——yolov5+lpr3+deepsort交通识别检测系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

使用yolo v2构建目标检测系统,可以检测图像和视频,测试了公路上和实验室场景.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

YBTrack YOLOv5 + BYTE 无人机目标跟踪系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

ROS 机器人系统课程设计(自主导航+YOLO目标检测+语音播报).zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于yolov7+deepsort的智能交通系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于pyqt yolov5 dlib的驾驶员行为监控系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

基于YOLOv5的水表读数系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

yolo + arcface 实现 商用级别人脸支付系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-08

ssm(spring+springMVC+mybatis)开发的超市订购后台管理系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于SSM layui 开发的多人博客系统,目标在于让每个人都能精准阅读和专注写作。.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于Vue.js的在线考试系统后端项目源码(基于SpringBoot的SSM框架).zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

SSM框架项目 ,学生管理系统,简单Java Web项目实战.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

简单的SSM拍卖系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于ssm+redis的抢单系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

在线点餐系统 ssm, redis, mysql.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于Lora的物联网监管系统服务器, SSM+MySQL+MQTT.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于 SpringBoot 的 SSM 前后端分离的家政服务管理系统。.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于SSM的党员管理系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于Bootstrap + Maven +SSM框架秒杀系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于SSM实现的教务管理系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

Eagle-OJ系统后台,基于SSM开发.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

ssm+shiro开发的权限管理系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于SSM的前后端分离的仓储管理系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于SSM的房产中介管理系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

秒杀系统(ssm+maven+idea).zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

超市订单管理系统ssm.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

基于SSM的电子考勤系统.zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

会议管理系统(SSM).zip

计算机类毕业设计、课程作业,系统源码!!!

2024-04-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除