《几何与代数导引》例2.7.4


求$yz$面上二次曲线
\begin{equation}
  \begin{cases}
    \frac{y^2}{a^2}=2z\\
x=0\\
  \end{cases}
\end{equation}
绕$z$轴旋转所得的二次曲面的方程.


解:对于二次曲面上的任意点$p=(x,y,z)$.都存在相应的二次曲面上的点
$(x_0,y_0,z_0)$,使得
\begin{equation}
  (x-x_0,y-y_0,z-z_0)\cdot (0,0,1)=0
\end{equation}

\begin{equation}
  x^2+y^2+z^2=x_0^2+y_0^2+z_0^2
\end{equation}

\begin{equation}
  \begin{cases}
    \frac{y_0^2}{a^2}=2z_{0}\\
x_0=0\\
z_0\geq 0\\
  \end{cases}
\end{equation}
可得
\begin{equation}
x^2+y^2=2za^2
\end{equation}

转载于:https://www.cnblogs.com/yeluqing/archive/2012/08/12/3828306.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值