dp --- Codeforces 245H :Queries for Number of Palindromes

 Queries for Number of Palindromes

Problem's Link:   http://codeforces.com/problemset/problem/245/H


 

Mean: 

给你一个字符串,然后q个询问:从i到j这段字符串中存在多少个回文串。

 

analyse:

dp[i][j]表示i~j这段的回文串数。

首先判断i~j是否为回文,是则dp[i][j]=1,否则dp[i][j]=0;

那么dp[i][j]=dp[i][j]+dp[i][j-1]+dp[i+1[j]-dp[i+1][j-1],从后往前推;

注意判断dp[i][j]是否是回文也需要从后往前推,否则超时。

Time complexity: O(n*n)

 

Source code: 

 

//  Memory   Time
//  1347K     0MS
//   by : crazyacking
//   2015-03-31-16.17
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<iostream>
#include<algorithm>
#define MAXN 5005
#define LL long long
using namespace std;
char str[MAXN];
int dp[MAXN][MAXN];

bool judge(int sta,int en)
{
        for(int i=sta,j=en;i<j;++i,--j)
        {
                if(str[i]!=str[j])
                        return false;
        }
        return true;
}
int main()
{
        gets(str);
        int len=strlen(str);
        memset(dp,0,sizeof dp);
        for(int i=0;i<len;++i)
        {
                if(str[i]==str[i+1])
                        dp[i][i+1]=1;
                dp[i][i]=1;
        }
        for(int i=len-1;i>=0;--i)
        {
                for(int j=i;j<len;++j)
                {
                        if(dp[i+1][j-1]==1&&str[i]==str[j])
                                dp[i][j]=1;
                }
        }
        for(int i=len-1;i>=0;--i)
        {
                for(int j=i;j<len;++j)
                {
                        dp[i][j]=dp[i][j]+dp[i][j-1]+dp[i+1][j]-dp[i+1][j-1];
                }
        }
        int q;
        scanf("%d",&q);
        while(q--)
        {
                int x,y;
                scanf("%d %d",&x,&y);
                printf("%d\n",dp[x-1][y-1]);
        }
        return 0;
}
View Code

 

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值