题目描述
设有一个N*M方格的棋盘(l<=N<=100,1<=M<=100)(30%)
求出该棋盘中包含有多少个正方形、多少个长方形(不包括正方形)。
例如:当 N=2, M=3时:
正方形的个数有8个:即边长为1的正方形有6个;
边长为2的正方形有2个。
长方形的个数有10个:
即2*1的长方形有4个:
1*2的长方形有3个:
3*1的长方形有2个:
3*2的长方形有1个:
如上例:输入:2 3
输出:8 10
输入输出格式
输入格式:
N和M
输出格式:
正方形的个数与长方形的个数
输入输出样例
输入样例#1:
2 3
输出样例#1:
8 10
思路:数学公式
代码实现:
1 #include<cstdio> 2 int n,m,an,as; 3 int s[110]; 4 inline int min_(int x,int y){return x<y?x:y;} 5 inline int max_(int x,int y){return x>y?x:y;} 6 int main(){ 7 scanf("%d%d",&n,&m); 8 for(int i=0;i<min_(n,m);i++) an+=(n-i)*(m-i); 9 for(int i=1;i<=max_(n,m);i++) s[i]=s[i-1]+i; 10 as=s[n]*s[m]; 11 printf("%d %d\n",an,as-an); 12 return 0; 13 }
题目来源:洛谷