题目链接:http://codeforces.com/contest/960/problem/C
题意:对于任意包含n个元素的集合,他的子集有2^n-1个(不包括空集),然后现在告诉你某个集合的子集中,满足最大元素-最小元素差值<d的子集有x个,现在让你构造一个集合,使得满足上述条件。输出集合大小还有每个元素。集合元素个数大于10000输出-1。
分析:做这道题的时候一直在纠结什么情况输出-1,最后直接判断元素个数,如果大于10000,就输出-1.然后还有不知道自己的策略是不是最优策略,感觉不是最优策略但是AC了。具体思路是我们可以考虑对于任意一个有k个元素的集合,他有2^k-1个子集,如果这个集合的最大元素和最小元素差值小于d,那么所有子集都是满足的,因此可以对于他给定的x,拆分为元素个数为i个的小集合,小集合之间的最大元素和最小元素不满足情况,集合之内的一定满足就可以了。然后对于元素个数为i的小集合,我们只需要任意取i个相同元素就可以了。集合之间为了保证不满足,我们第一个集合从1开始,第二个就是1+d,以此类推就可以了。(我感觉这样不是最优,要想用最少的元素构造最多的满足条件的子集,比如现在要构造x=11,d=3的集合,如果用我的策略,需要构造1 1 1 4 4 7这6个元素来满足,但是如果我们用末尾添加策略(就是在已经构造好的集合最后添加一个元素,使得该元素与已有集合中的m个元素差值小于d,那么这次添加多出的满足条件的子集个数又增加了2^m个)的话,只需要1 2 3 4就可以满足了,所以我的策略应该不是最优,比赛刚打到一半有事出去了,没来的急码,大家可以尝试一下)
AC代码:(不太靠谱策略)
1 #include<bits/stdc++.h> 2 3 using namespace std; 4 5 long long a[50]; 6 int b[50]; 7 int main(){ 8 ios_base::sync_with_stdio(0); 9 cin.tie(0); 10 long long x,d; 11 a[0]=1; 12 for(int i=1;i<=50;i++){ 13 a[i]=a[i-1]*2; 14 } 15 for(int i=0;i<=50;i++){ 16 a[i]--; 17 } 18 cin>>x>>d; 19 long long n=0; 20 memset(b,0,sizeof(b)); 21 for(int i=50;i>=1;i--){ 22 if(x>=a[i]){ 23 b[i]=x/a[i]; 24 x=x%a[i]; 25 n+=b[i]*i; 26 } 27 } 28 if(n>10000) { 29 cout<<-1<<endl; 30 return 0; 31 } 32 cout<<n<<endl; 33 long long ans=1; 34 for(int i=1;i<=50;i++){ 35 for(int j=1;j<=b[i];j++){ 36 for(int k=0;k<i;k++){ 37 cout<<ans<<" "; 38 } 39 ans+=d; 40 } 41 } 42 cout<<endl; 43 return 0; 44 }