1、项目名称:
2、程序代码:
版本一(详细版):
package com.mtjoin; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class MTjoin { public static int time = 0; public static class Map extends Mapper<Object, Text, Text, Text>{ public void map(Object key, Text value, Context context)throws IOException,InterruptedException{ System.out.println("mapper........................"); String line = value.toString(); if(line.contains("factoryname")==true || line.contains("addressID")== true){ return ; } int i = 0; while(line.charAt(i) >= '9'|| line.charAt(i) <= '0'){ i++; } if(line.charAt(0) >= '9'|| line.charAt(0) <= '0'){ int j = i-1; while(line.charAt(j) != ' ') j--; System.out.println("key:"+line.substring(i)+" value:"+line.substring(0,j)); String values[] = {line.substring(0, j),line.substring(i)}; context.write(new Text(values[1]), new Text("1+"+values[0])); } else { int j = i + 1; while(line.charAt(j)!=' ') j++; System.out.println("key:"+line.substring(0, i+1)+" value:"+line.substring(j)); String values[] ={line.substring(0,i+1),line.substring(j)}; context.write(new Text(values[0]), new Text("2+"+values[1])); } } } public static class Reduce extends Reducer<Text, Text, Text, Text>{ public void reduce(Text key, Iterable<Text> values, Context context)throws IOException,InterruptedException{ System.out.println("reducer........................"); if( time == 0){ context.write(new Text("factoryname"), new Text("addressname")); time++; } int factorynum = 0; String factory[] = new String[10]; int addressnum = 0; String address[] = new String[10]; Iterator ite = values.iterator(); while(ite.hasNext()){ String record = ite.next().toString(); char type = record.charAt(0); if(type == '1'){ factory[factorynum] = record.substring(2); factorynum++; } else{ address[addressnum] = record.substring(2); addressnum++; } } if(factorynum != 0 && addressnum != 0){ for(int m = 0 ; m < factorynum ; m++){ for(int n = 0; n < addressnum; n++){ context.write(new Text(factory[m]), new Text(address[n])); System.out.println("factoryname:"+factory[m]+" addressname:"+address[n]); } } } } } public static void main(String [] args)throws Exception{ Configuration conf = new Configuration(); String otherArgs[] = new GenericOptionsParser(conf,args).getRemainingArgs(); if(otherArgs.length != 2){ System.err.println("Usage:MTjoin<in><out>"); System.exit(2); } Job job = new Job(conf,"multiple table join"); job.setJarByClass(MTjoin.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true)? 0:1); } }
版本二(简化版):
package com.mtjoin; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class MTjoin { public static int time = 0; public static class Map extends Mapper<Object, Text, Text, Text>{ public void map(Object key, Text value, Context context)throws IOException,InterruptedException{ System.out.println("mapper........................"); String line = value.toString(); if(line.contains("factoryname")==true || line.contains("addressID")== true){ return ; } int len = line.length(); if(line.charAt(0) > '9'|| line.charAt(0) < '0'){ System.out.println("key:"+line.substring(len-1)+" value:"+line.substring(0,len-2)); String values[] = {line.substring(0, len-2),line.substring(len-1)}; context.write(new Text(values[1]), new Text("1+"+values[0])); } else { System.out.println("key:"+line.substring(0, 1)+" value:"+line.substring(2)); String values[] ={line.substring(0,1),line.substring(2)}; context.write(new Text(values[0]), new Text("2+"+values[1])); } } } public static class Reduce extends Reducer<Text, Text, Text, Text>{ public void reduce(Text key, Iterable<Text> values, Context context)throws IOException,InterruptedException{ System.out.println("reducer........................"); if( time == 0){ context.write(new Text("factoryname"), new Text("addressname")); time++; } int factorynum = 0; String factory[] = new String[10]; int addressnum = 0; String address[] = new String[10]; Iterator ite = values.iterator(); while(ite.hasNext()){ String record = ite.next().toString(); char type = record.charAt(0); if(type == '1'){ factory[factorynum] = record.substring(2); factorynum++; } else{ address[addressnum] = record.substring(2); addressnum++; } } if(factorynum != 0 && addressnum != 0){ for(int m = 0 ; m < factorynum ; m++){ for(int n = 0; n < addressnum; n++){ context.write(new Text(factory[m]), new Text(address[n])); System.out.println("factoryname:"+factory[m]+" addressname:"+address[n]); } } } } } public static void main(String [] args)throws Exception{ Configuration conf = new Configuration(); String otherArgs[] = new GenericOptionsParser(conf,args).getRemainingArgs(); if(otherArgs.length != 2){ System.err.println("Usage:MTjoin<in><out>"); System.exit(2); } Job job = new Job(conf,"multiple table join"); job.setJarByClass(MTjoin.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true)? 0:1); } }
3、测试数据:
address:
addressID addressname
1 Beijing
2 Guangzhou
3 Shenzhen
4 Xian
1 Beijing
2 Guangzhou
3 Shenzhen
4 Xian
factory:
factoryname addressname
Beijing Red Star 1
Shenzhen Thunder 3
Guangzhou Honda 2
Beijing Rising 1
Guangzhou Development Bank 2
Tencent 3
Bank of Beijing 1
Beijing Red Star 1
Shenzhen Thunder 3
Guangzhou Honda 2
Beijing Rising 1
Guangzhou Development Bank 2
Tencent 3
Bank of Beijing 1
4、运行过程:
14/09/24 09:39:55 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/09/24 09:39:55 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/09/24 09:39:55 INFO input.FileInputFormat: Total input paths to process : 2
14/09/24 09:39:55 WARN snappy.LoadSnappy: Snappy native library not loaded
14/09/24 09:39:55 INFO mapred.JobClient: Running job: job_local_0001
14/09/24 09:39:55 INFO util.ProcessTree: setsid exited with exit code 0
14/09/24 09:39:55 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@e095722
14/09/24 09:39:55 INFO mapred.MapTask: io.sort.mb = 100
14/09/24 09:39:55 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/24 09:39:55 INFO mapred.MapTask: record buffer = 262144/327680
mapper........................
mapper........................
key:1 value:Beijing Red Star
mapper........................
key:3 value:Shenzhen Thunder
mapper........................
key:2 value:Guangzhou Honda
mapper........................
key:1 value:Beijing Rising
mapper........................
key:2 value:Guangzhou Development Bank
mapper........................
key:3 value:Tencent
mapper........................
key:1 value:Bank of Beijing
14/09/24 09:39:55 INFO mapred.MapTask: Starting flush of map output
14/09/24 09:39:55 INFO mapred.MapTask: Finished spill 0
14/09/24 09:39:55 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
14/09/24 09:39:56 INFO mapred.JobClient: map 0% reduce 0%
14/09/24 09:39:58 INFO mapred.LocalJobRunner:
14/09/24 09:39:58 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
14/09/24 09:39:58 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@7dabd20
14/09/24 09:39:58 INFO mapred.MapTask: io.sort.mb = 100
14/09/24 09:39:58 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/24 09:39:58 INFO mapred.MapTask: record buffer = 262144/327680
mapper........................
mapper........................
key:1 value:Beijing
mapper........................
key:2 value:Guangzhou
mapper........................
key:3 value:Shenzhen
mapper........................
key:4 value:Xian
14/09/24 09:39:58 INFO mapred.MapTask: Starting flush of map output
14/09/24 09:39:58 INFO mapred.MapTask: Finished spill 0
14/09/24 09:39:58 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
14/09/24 09:39:59 INFO mapred.JobClient: map 100% reduce 0%
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
14/09/24 09:40:01 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@49fa6f3c
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Merger: Merging 2 sorted segments
14/09/24 09:40:01 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 218 bytes
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
reducer........................
factoryname:Beijing Red Star addressname:Beijing
factoryname:Beijing Rising addressname:Beijing
factoryname:Bank of Beijing addressname:Beijing
reducer........................
factoryname:Guangzhou Honda addressname:Guangzhou
factoryname:Guangzhou Development Bank addressname:Guangzhou
reducer........................
factoryname:Shenzhen Thunder addressname:Shenzhen
factoryname:Tencent addressname:Shenzhen
reducer........................
14/09/24 09:40:01 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
14/09/24 09:40:01 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/user/hadoop/mtjoin_output02
14/09/24 09:40:04 INFO mapred.LocalJobRunner: reduce > reduce
14/09/24 09:40:04 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
14/09/24 09:40:05 INFO mapred.JobClient: map 100% reduce 100%
14/09/24 09:40:05 INFO mapred.JobClient: Job complete: job_local_0001
14/09/24 09:40:05 INFO mapred.JobClient: Counters: 22
14/09/24 09:40:05 INFO mapred.JobClient: Map-Reduce Framework
14/09/24 09:40:05 INFO mapred.JobClient: Spilled Records=22
14/09/24 09:40:05 INFO mapred.JobClient: Map output materialized bytes=226
14/09/24 09:40:05 INFO mapred.JobClient: Reduce input records=11
14/09/24 09:40:05 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
14/09/24 09:40:05 INFO mapred.JobClient: Map input records=13
14/09/24 09:40:05 INFO mapred.JobClient: SPLIT_RAW_BYTES=238
14/09/24 09:40:05 INFO mapred.JobClient: Map output bytes=192
14/09/24 09:40:05 INFO mapred.JobClient: Reduce shuffle bytes=0
14/09/24 09:40:05 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
14/09/24 09:40:05 INFO mapred.JobClient: Reduce input groups=4
14/09/24 09:40:05 INFO mapred.JobClient: Combine output records=0
14/09/24 09:40:05 INFO mapred.JobClient: Reduce output records=8
14/09/24 09:40:05 INFO mapred.JobClient: Map output records=11
14/09/24 09:40:05 INFO mapred.JobClient: Combine input records=0
14/09/24 09:40:05 INFO mapred.JobClient: CPU time spent (ms)=0
14/09/24 09:40:05 INFO mapred.JobClient: Total committed heap usage (bytes)=813170688
14/09/24 09:40:05 INFO mapred.JobClient: File Input Format Counters
14/09/24 09:40:05 INFO mapred.JobClient: Bytes Read=216
14/09/24 09:40:05 INFO mapred.JobClient: FileSystemCounters
14/09/24 09:40:05 INFO mapred.JobClient: HDFS_BYTES_READ=586
14/09/24 09:40:05 INFO mapred.JobClient: FILE_BYTES_WRITTEN=122093
14/09/24 09:40:05 INFO mapred.JobClient: FILE_BYTES_READ=1658
14/09/24 09:40:05 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=202
14/09/24 09:40:05 INFO mapred.JobClient: File Output Format Counters
14/09/24 09:40:05 INFO mapred.JobClient: Bytes Written=202
14/09/24 09:39:55 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/09/24 09:39:55 INFO input.FileInputFormat: Total input paths to process : 2
14/09/24 09:39:55 WARN snappy.LoadSnappy: Snappy native library not loaded
14/09/24 09:39:55 INFO mapred.JobClient: Running job: job_local_0001
14/09/24 09:39:55 INFO util.ProcessTree: setsid exited with exit code 0
14/09/24 09:39:55 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@e095722
14/09/24 09:39:55 INFO mapred.MapTask: io.sort.mb = 100
14/09/24 09:39:55 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/24 09:39:55 INFO mapred.MapTask: record buffer = 262144/327680
mapper........................
mapper........................
key:1 value:Beijing Red Star
mapper........................
key:3 value:Shenzhen Thunder
mapper........................
key:2 value:Guangzhou Honda
mapper........................
key:1 value:Beijing Rising
mapper........................
key:2 value:Guangzhou Development Bank
mapper........................
key:3 value:Tencent
mapper........................
key:1 value:Bank of Beijing
14/09/24 09:39:55 INFO mapred.MapTask: Starting flush of map output
14/09/24 09:39:55 INFO mapred.MapTask: Finished spill 0
14/09/24 09:39:55 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
14/09/24 09:39:56 INFO mapred.JobClient: map 0% reduce 0%
14/09/24 09:39:58 INFO mapred.LocalJobRunner:
14/09/24 09:39:58 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
14/09/24 09:39:58 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@7dabd20
14/09/24 09:39:58 INFO mapred.MapTask: io.sort.mb = 100
14/09/24 09:39:58 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/24 09:39:58 INFO mapred.MapTask: record buffer = 262144/327680
mapper........................
mapper........................
key:1 value:Beijing
mapper........................
key:2 value:Guangzhou
mapper........................
key:3 value:Shenzhen
mapper........................
key:4 value:Xian
14/09/24 09:39:58 INFO mapred.MapTask: Starting flush of map output
14/09/24 09:39:58 INFO mapred.MapTask: Finished spill 0
14/09/24 09:39:58 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
14/09/24 09:39:59 INFO mapred.JobClient: map 100% reduce 0%
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
14/09/24 09:40:01 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@49fa6f3c
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Merger: Merging 2 sorted segments
14/09/24 09:40:01 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 218 bytes
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
reducer........................
factoryname:Beijing Red Star addressname:Beijing
factoryname:Beijing Rising addressname:Beijing
factoryname:Bank of Beijing addressname:Beijing
reducer........................
factoryname:Guangzhou Honda addressname:Guangzhou
factoryname:Guangzhou Development Bank addressname:Guangzhou
reducer........................
factoryname:Shenzhen Thunder addressname:Shenzhen
factoryname:Tencent addressname:Shenzhen
reducer........................
14/09/24 09:40:01 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
14/09/24 09:40:01 INFO mapred.LocalJobRunner:
14/09/24 09:40:01 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
14/09/24 09:40:01 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/user/hadoop/mtjoin_output02
14/09/24 09:40:04 INFO mapred.LocalJobRunner: reduce > reduce
14/09/24 09:40:04 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
14/09/24 09:40:05 INFO mapred.JobClient: map 100% reduce 100%
14/09/24 09:40:05 INFO mapred.JobClient: Job complete: job_local_0001
14/09/24 09:40:05 INFO mapred.JobClient: Counters: 22
14/09/24 09:40:05 INFO mapred.JobClient: Map-Reduce Framework
14/09/24 09:40:05 INFO mapred.JobClient: Spilled Records=22
14/09/24 09:40:05 INFO mapred.JobClient: Map output materialized bytes=226
14/09/24 09:40:05 INFO mapred.JobClient: Reduce input records=11
14/09/24 09:40:05 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
14/09/24 09:40:05 INFO mapred.JobClient: Map input records=13
14/09/24 09:40:05 INFO mapred.JobClient: SPLIT_RAW_BYTES=238
14/09/24 09:40:05 INFO mapred.JobClient: Map output bytes=192
14/09/24 09:40:05 INFO mapred.JobClient: Reduce shuffle bytes=0
14/09/24 09:40:05 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
14/09/24 09:40:05 INFO mapred.JobClient: Reduce input groups=4
14/09/24 09:40:05 INFO mapred.JobClient: Combine output records=0
14/09/24 09:40:05 INFO mapred.JobClient: Reduce output records=8
14/09/24 09:40:05 INFO mapred.JobClient: Map output records=11
14/09/24 09:40:05 INFO mapred.JobClient: Combine input records=0
14/09/24 09:40:05 INFO mapred.JobClient: CPU time spent (ms)=0
14/09/24 09:40:05 INFO mapred.JobClient: Total committed heap usage (bytes)=813170688
14/09/24 09:40:05 INFO mapred.JobClient: File Input Format Counters
14/09/24 09:40:05 INFO mapred.JobClient: Bytes Read=216
14/09/24 09:40:05 INFO mapred.JobClient: FileSystemCounters
14/09/24 09:40:05 INFO mapred.JobClient: HDFS_BYTES_READ=586
14/09/24 09:40:05 INFO mapred.JobClient: FILE_BYTES_WRITTEN=122093
14/09/24 09:40:05 INFO mapred.JobClient: FILE_BYTES_READ=1658
14/09/24 09:40:05 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=202
14/09/24 09:40:05 INFO mapred.JobClient: File Output Format Counters
14/09/24 09:40:05 INFO mapred.JobClient: Bytes Written=202
5、运行结果:
factoryname addressname
Beijing Red Star Beijing
Beijing Rising Beijing
Bank of Beijing Beijing
Guangzhou Honda Guangzhou
Guangzhou Development Bank Guangzhou
Shenzhen Thunder Shenzhen
Tencent Shenzhen
Beijing Red Star Beijing
Beijing Rising Beijing
Bank of Beijing Beijing
Guangzhou Honda Guangzhou
Guangzhou Development Bank Guangzhou
Shenzhen Thunder Shenzhen
Tencent Shenzhen