[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4

(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive. In this decomposition the positive part $P$ is unique, $P=|A|$. The unitary part $U$ is unique if $A$ is invertible.

 

(2). An operator $A$ is normal if and only if the factors $U$ and $P$ in the polar decomposition of $A$ commute.

 

(3). We have derived the polar decomposition from the singular value decomposition. Show that it is possible to derive the latter from the former.

 

Solution.  

 

(1). By the singular value decomposition, there exists unitaries $W$ and $Q$ such that $$\bex A=WSQ^*, \eex$$ and thus $$\bex A=WQ^*\cdot QSQ^*. \eex$$ Setting $$\bex U=WQ^*,\quad P=QSQ^*=|A|, \eex$$ we are completed.

 

(2). $\ra$: By density argument, we may assume $A$ is invertible. Suppose $A$ is normal and $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex A=V\vLm V^*,\quad \vLa=\diag(\lm_1,\cdots,\lm_n). \eex$$ By the uniqueness part of (1), $$\bex U=V\sgn(\vLm)V^*,\quad P=V|\vLm|V^*, \eex$$ and thus $UP=PU=A$. $\la$: Suppose $A=UP$ is the polar decomposition with $UP=PU$, then $$\bex A^*A=PU^*UP=P^2, \eex$$ $$\bex AA^*=UP\cdot(UP)^*=PU\cdot (PU)^* =PUU^*P=P^2. \eex$$

 

(3). Suppose $A=UP$ is the polar decomposition, then by the spectral theorem, there exists a unitary $V$ such that $$\bex P=V\diag(s_1,\cdots,s_n)V^*,\quad s_i\geq 0. \eex$$ Hence, $$\bex A=UV\cdot \diag(s_1,\cdots,s_n)\cdot V^*. \eex$$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值