数学归纳法是一种证明的方法,如果你能正确的使用数学归纳法证明出某种命题,那么这个是会被别人所承认的。
整数:数0,1,-1,2,-2,3,…称之为整数。
所有整数构成的集合记为Z(来自德语中的Zahl):
自然数集是由所有满足n>=0的整数n构成的:
定义 设n,d是两个整数,如果存在整数a,使得n=da,则称d是n的一个因子。自然数n称为素数,如果n>=2且它的因子只有+-1和+-n;如果自然数n>=2不是素数,则称它为合数。
这里就是定义了因子、合数、素数的概念,没啥特别要理解的。
哥德巴赫猜想:任何一个大于或者等于4的偶数m都是两个素数的和。
这就是数学啊,一个简单得不能再简单的定义,一个直白得不能再直白的命题,却要花上很多牛叉数学家花上数百年的时间都未必搞的定。
陈景润的工作:证明了每个充分大的偶数m都可写成p+q的形式,其中p是素数,q"几乎"是素数,也就是说q是一个素数或者两个素数的乘积。
不知道是从那里看到的,别人评论说陈景润是"榨干了筛法的最后一滴血",看到这个评论觉得还可以这么形容。
最小整数公理:自然数集N的每个非空子集C中都含有一个最小的整数。
啥叫公理,大家都认为是对的,但是又证明不了的就叫公理咯,不要就纠结公理了,记住吧
最小反例:设k是一个自然数,S(k),S(k+1),...,S(n),...是一组命题,若这些命题中有一些是假命题,则一定能找到第一个假命题。
你说数学是不是闲的蛋疼,这么显而易见的道理,还需要大费周章的证明,#¥*&#*#¥@
不说废话了,前面不是已经给出了最小公理了么,现在的就是要往公理上套,争取用公理支撑结论。
"第一个假命题"="序号最小的假命题",然后如果要用最小公理的话,就需要构造一个自然数集N的非空子集了,题目中说了,"这些命题中有一些是假命题",那么我们可以说这些假命题的序号构成了一个自然数N的非空子集C,C是那些由n>=k所构成的集合,由最小公理可知,C中有一个最小整数m,也就是S(m)就是第一个假命题。
定理 每个整数n>=2或者是素数或者是一些素数的乘积。
证明思路:硬证是证不出来的,你无法穷举所有的整数吧,你也没法找到一般的形式,就说是素数的乘积。所以这里要用反证法。反证法在证明某些命题的时候,有奇特的效果。因为反证能给我们额外提供一个条件,然后顺着这个条件去推理,最后如果推翻了反证时的前提,就说明反证的假设是无效的,间接证明了命题。
命题 设m>=2是正整数,若m不能被任何满足的素数p整除,则m是一个素数。
证明思路:假设m是不是素数,那么思路就是证明一定有小于等于根号m的素数因子,然后根据逆否命题,得出m一定是素数。
在编程练习的时候会给定一个整数,让你判断是不是素数,这就是现成的方法咯。
我擦,数学归纳法还可以被证明:
定理 (数学归纳法) 给定一个关于自然数n>=1的命题S(n),假设
(i)基础步骤:S(1)成立;
(ii)归纳步骤:若S(n)成立,则S(n+1)也成立。
那么对一切整数n>=1,S(n)都成立。
证明思路:只要这证明,使得S(n)为假命题成立的正整数n构成的集合C是空集。
假设C为非空,则存在第一个假命题S(m),因为S(1)成立,所以由(i)一定有m>=2,这说明m-1>=1,因此命题S(m-1)存在。因为m是最小反例,所以m-1必使定理成立,但是由(ii)可知,S(m)=S([m-1]+1)成立,这就矛盾了,故C是空集。
最小整数公理不仅适用于N,而且还适用于N的任意非空子集Q,所以数学归纳法中基础步骤可以从任意一个正整数开始。
定义 自然数n>=1的前导是指:满足k<n的自然数,即0,1,2,...,n-1(0没有前导)。
定理 (第二归纳法)设S(n)是关于正整数n的一组命题,并设
(i)S(1)成立,且
(ii)若对n的所有前导k有S(k)成立,使得S(n)也成立。
则S(n)对一切整数n>=1都成立。
证明思路:设使得S(n)为假命题的n构成集合C,只要证明集合C为空就行。现在假设C是非空的,那么存在最小反例m,即存在第一个假命题S(m)(这里用到了最小反例定理,而最小反例定理有依赖于最小整数公理)。又因为m是最小反例,所以对于所有的满足k<m的k,定理都是成立的,即对于m的一切前导k有S(k)成立,此时有(ii)知S(m)成立,矛盾。所以C为空集,从而所有的命题S(n)成立