一个糟糕的Erlang练习题

好吧,用的语法很糟糕。。。但是至少是做了练习。

题目

%The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
%1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
%Let us list the factors of the first seven triangle numbers:
%
% 1: 1
% 3: 1,3
% 6: 1,2,3,6
%10: 1,2,5,10
%15: 1,3,5,15
%21: 1,3,7,21
%28: 1,2,4,7,14,28
%We can see that 28 is the first triangle number to have over five divisors.

%What is the value of the first triangle number to have over five hundred divisors?

好吧,我先写了个module,用来计算triangle num:

-module(triangle).
-export([triNum/1]).

triNum(0) -> 0;
triNum(N) ->
    N + triNum(N-1).

然后,我写了个module,来计算具体某个数有多少个triNum:

-module(divisor).
-export([num_of_divisor/2]).

num_of_divisor(_, 0) -> 0;
num_of_divisor(Num, Factor) when (Num rem Factor) =:= 0 ->
    2 + num_of_divisor(Num, Factor - 1);
num_of_divisor(Num, Factor) when (Num rem Factor) =/= 0 ->
    num_of_divisor(Num, Factor-1).

好吧,然后,我又用了第三个module:

-module(forRange).
-export([forRange/1]).
-import(triangle, [triNum/1]).
-import(divisor, [num_of_divisor/2]).

forRange(0) -> 0;
forRange(N) when N>0 ->
    TriNum = triNum(N),
    Res = num_of_divisor(TriNum, TriNum)/2,
    if 
    Res >= 100 ->
        io:format("~f~n", [Res]),
        io:format("~b~n", [N]);
    true ->
        io:format("~n")
    end,
    
    forRange(N-1).

。。。

最后数找到了384,我还给自己找了个冠冕堂皇的接口,我还在熟悉语法。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值