圆和椭圆的参数方程

本文介绍了圆和椭圆的参数方程,包括它们的由来、标准方程如何转换为参数方程,以及参数方程在解决距离最值问题时的优势。通过实例展示了使用参数方程简化问题的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、圆和椭圆的参数方程的由来

从下面的动画中能总结出来圆和椭圆的参数方程吗?

  • 圆的参数方程(圆心\((a,b)\),半径\(R\)

\(\begin{cases} x=a+Rcos\theta \\ y=b+Rsin\theta\end{cases}(\theta为参数,0\leq \theta<2\pi)\)

其参数\(\theta\)的几何意义是圆上动点和圆心连线的旋转角;

  • 椭圆的参数方程

\(\begin{cases} x=a\cos\phi \\ y=b\sin\phi \end{cases} (\phi为参数,0\leq \phi<2\pi)\)

其参数\(\phi\)的几何意义是对应的大圆或小圆半径的旋转角\(\angle AOM\),也就是椭圆的离心角.

不是椭圆上动点和中心连线的旋转角\(\angle AOP\);切记!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值