python实现排队论模型_使用python+sklearn实现物种分布模型

本文探讨了如何运用Python和机器学习库Sklearn对物种地理分布进行建模,特别是针对南美哺乳动物“Bradypus variegatus”和“Microryzomys minutus”。利用过去观察到的数据和14个环境变量,将问题转换为密度估计问题,以解决只有正例的挑战。参考文献来自Phillips等人的2006年研究。
摘要由CSDN通过智能技术生成

对物种的地理分布进行建模是保护生物学(conservation biology)中的一个重要研究课题。在本示例中,我们根据过去的观察和14个环境变量,对两种南美哺乳动物的地理分布进行了建模。由于我们只有正例(positive examples)(没有不成功的观察结果),我们将这个问题转化为密度估计问题,并使用sklearn.svm.OneClassSVM作为建模工具。数据集由Phillips等人(2006年)提供,并使用basemap来绘制南美洲的海岸线和国界。

这两个物种是:

  • “Bradypus variegatus” , the Brown-throated Sloth.

  • “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela.

参考文献

  • “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006.

8416b51008fe95fb6846e9b16aed6208.png
sphx_glr_plot_species_distribution_modeling_001

输出:

________________________________________________________________________________
Modeling distribution of species 'bradypus variegatus'
 - fit OneClassSVM ... done.
 - plot coastlines from coverage
 - predict species distribution
 Area under the ROC curve : 0.868443
________________________________________________________________________________
Modeling distribution of species 'microryzomys minutus'
 - fit OneClassSVM ... done.
 - plot coastlines from coverage
 - predict species distribution
 Area under the ROC curve : 0.993919
time elapsed: 5.01s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值