本专题主要从以下两个方面做以阐述:
A、求曲线的切线
类型1、在点处的切线
\(\fbox{例1}\)如函数\(y=x^3\)在点\(A(1,1)\)处(或叙述为在\(x=1\)处)的切线方程为什么?
思路:\(k=f'(1)=3\)+切点\(A(1,1)\),利用点斜式写出切线方程。
\(\fbox{例2}\)
直线\(y=x\)上的动点为\(P\),函数\(y=lnx\)上的动点是\(Q\),求\(|PQ|\)的最小值。
【等价题目】直线\(y=x\)上的点为\(P(x,y)\),函数\(y=lnx\)上的点是\(Q(m,n)\),求\(\sqrt{(x-m)^2+(y-n)^2}\)的最小值。
思路:平行线法,
设和直线\(y=x\)平行且和函数\(y=lnx\)相切的直线为\(y=x+m\),
切点为\(P_0(x_0,y_0)\),则有
\(\begin{cases} y_0=x_{0}+ m \\ y_0=lnx_0 \\ f'(x_0)=\cfrac{1}{x_0}=1\end{cases}\);
从而解得\(x_0=1,y_0=0,m=-1\)
所以所求的点点距的最小值,就转化为切点\(P_0(1,0)\)到直线\(y=x\)的点线距,
或者两条直线\(y=x,y=x-1\)的线线距了。
此时\(|PQ|_{min}=\cfrac{\sqrt{2}}{2}\);
\(\fbox{例3}\)函数\(y=kx\)与函数\(y=lnx\)相切于点\(Q\),求点\(Q\)的坐标。\((e,1)\)
分析:设函数\(y=kx\)与函数\(y=lnx\)切点为\(Q(x_0,y_0)\),则有
\(\begin{cases} y_0=kx_0 \\ y_0=lnx_0 \\ k=f'(x_0)=\cfrac{1}{x_0}\end{cases}\);
从而解得\(x_0=e,y_0=1,k=\cfrac{1}{e}\),故切点\(Q\)的坐标为\((e,1)\) 具体参见课件
\(\fbox{例3}\)函数\(y=mx\)与函数\(y=e^x\)相切于点\(P\),求点\(P\)的坐标。\((1,e)\)
分析:设函数\(y=mx\)与函数\(y=e^x\)切点为\(P(x_0,y_0)\),则有
\(\begin{cases} y_0=mx_0 \\ y_0=e^{x_0} \\ m=f'(x_0)=e^{x_0}\end{cases}\);
从而解得\(x_0=1,y_0=e,m=e\),故切点\(P\)的坐标为\((1,e)\)。
\(\fbox{例3}\)
函数\(y=mx\)与函数\(y=e^x\)的图像没有交点,求\(m\)的取值范围。
法1:导数法,仿上题可知,函数\(y=mx\)与函数\(y=e^x\)的图像没有交点,所求的\(m\)取值范围为$0\leq m<e $。
法2:转化法,则方程\(e^x=mx\)无解,即方程\(m=\cfrac{e^x}{x}\)无解,令函数\(g(x)=\cfrac{e^x}{x}\),
利用导数求得值域为\(g(x)\in (-\infty,0)\cup[e,+\infty)\),故要使得方程\(m=g(x)\)无解,得到$0\leq m<e $。
类型2、过点处的切线
\(\fbox{例4}\)
求曲线\(C:y=\cfrac{1}{3}x^3+\cfrac{4}{3}\)经过点\(P(2,4)\)的切线方程;(\(4x-y-4=0\)或\(x-y+2=0\))
思路:设经过点\(P(2,4)\)的切线方程与曲线相切于点\(P_0(x_0,y_0)\),则有
\(\begin{cases}y_0=\cfrac{1}{3}x_0^3+\cfrac{4}{3}\\ k=f'(x_0)=x_0^2\\ y-y_0=f'(x_0)(x-x_0) \end{cases}\)
又因为点\(P(2,4)\)在切线方程上,则有\(4-(\cfrac{1}{3}x_0^3+\cfrac{4}{3})=x_0^2(2-x_0)\)
整理得到,\(x_0^3-3x_0^2+4=0\)
【此处有难点:试商法,多项式除法,分组分解法】
试商法:令\(x_0=0\),如果上述方程成立,说明方程能分解出因子\(x_0\),本题目中显然不成立;
再令\(x_0=1\),上述方程不成立,说明方程不能分解出因子\(x_0-1\);再令\(x_0=-1\),上述方程成立,
说明方程能分解出因子\(x_0+1\);这样\(x_0^3-3x_0^2+4=(x_0+1)(x_0^2+bx_0+c)(b,c是常数,待定)\),
这样做的目的是为了降次;
分组分解法:由试商法可以指导我们的分组分解的方向,
如\(x_0^3-3x_0^2+4=(x_0^3+1)-3(x_0^2-1)\)
\(=(x_0+1)(x_0^2-x_0+1)-3(x_0+1)(x_0-1)\)
\(=(x_0+1)(x_0^2-x_0+1-3x_0+3)\)
\(=(x_0+1)(x_0-2)^2=0\);
多项式除法:如图所示,
即\((x_0+1)(x_0-2)^2=0\),解得\(x_0=-1\),或\(x_0=2\)
当\(x_0=-1\)时,切点为\((-1,1)\),\(k_1=1\),切线方程为\(x-y+2=0\);
当\(x_0=2\)时,切点为\((2,4)\),\(k_2=4\),切线方程为\(4x-y-4=0\);
总结:设切点,求切点;
B、单切线和(公切线)双切线问题
【2017全国卷1文科第14题高考真题】曲线\(y=x^2+\cfrac{1}{x}\)在点\((1,2)\)处的切线方程是__________。
分析:利用点斜式来求解,
其中斜率\(k=f'(x)_{|x=1}=(2x-\cfrac{1}{x^2})_{|x=1}=1\),
切点是\((1,2)\),
故切线方程为\(y-2=1(x-1)\),整理为\(y=x+1\)。
【2016全国卷2理科第16题高考真题】】【公切线问题】直线\(y=kx+b\)是函数\(y=lnx+2\)的切线,也是函数\(y=ln(x+1)\)的切线,求参数\(b\)的值。
思路:设直线\(y=kx+b\)与函数\(C_0:y=lnx+2\)相切于点\(P_0(x_0,y_0)\),
直线\(y=kx+b\)与函数\(C_1:y=ln(x+1)\)相切于点\(P_1(x_1,y_1)\),
则由题可知,
在点\(P_0(x_0,y_0)\)处的切线方程为\(y-y_0=f'(x_0)(x-x_0)\),
即\(y-(lnx_0+2)=\cfrac{1}{x_0}(x-x_0)\),
化简为\(y=\cfrac{1}{x_0}x+lnx_0+1\);
在点\(P_0(x_0,y_0)\)处的切线方程为\(y-y_1=f'(x_1)(x-x_1)\),
即\(y-ln(x_1+1)=\cfrac{1}{x_1+1}(x-x_1)\),
化简为\(y=\cfrac{1}{x_1+1}x+ln(x_1+1)-\cfrac{x_1}{x_1+1}\)
由这两条切线是同一条可知【(同一法】,
\(\begin{cases} k=\cfrac{1}{x_0}=\cfrac{1}{x_1+1} \\ b=lnx_0+1=ln(x_1+1)-\cfrac{x_1}{x_1+1} \end{cases}\)
解得:\(\begin{cases} x_0=x_1+1 \\ x_0=\cfrac{1}{2},x_1=-\cfrac{1}{2}\end{cases}\)
所以\(b=1+lnx_0=1+ln(\cfrac{1}{2})=1-ln2\).
\(\fbox{例5-1}\)(2017山西太原模拟)
设函数\(f(x)=\cfrac{3}{2}x^2-2ax(a>0)\)与\(g(x)=a^2lnx+b\)有公共点,且在公共点处的切线方程相同,则实数\(b\)的最大值为【】
A、\(\cfrac{1}{2e^2}\) \(\hspace{2cm}\) B、\(\cfrac{1}{2}e^2\) \(\hspace{2cm}\) C、\(\cfrac{1}{e}\) \(\hspace{2cm}\) D、 \(-\cfrac{3}{2e^2}\)
分析:本题目属于公切线问题,设切点为\(P(x_0,y_0)\),则满足以下方程组
\(\begin{cases}f'(x_0)=g'(x_0)①\\y_0=f(x_0)=\cfrac{3}{2}x_0^2-2ax_0②\\y_0=g(x_0)=a^2lnx_0+b③\end{cases}\)
由①得到\(x_0=a\)或\(x_0=-\cfrac{a}{3}(a>0,不符合舍去)\)
由②③得到,\(\cfrac{3}{2}x_0^2-2ax_0=a^2lnx_0+b\),将\(x_0=a\)代入,
分离参数\(b\)得到,\(b=-\cfrac{1}{2}a^2-a^2lna\)。
设\(h(a)=-\cfrac{1}{2}a^2-a^2lna(a>0)\),则\(b_{max}=h(a)_{max}\);
接下来,用导数研究\(h(a)\)的单调性。
\(h'(a)=-2a(1+lna)\),借助\(y=1+lna\)的大致图像可知,
\(h(a)\)在区间\((0,\cfrac{1}{e})\)单调递增,在区间\((\cfrac{1}{e},+\infty)\)上单调递减,
则\(h(a)_{max}=h(\cfrac{1}{e})=\cfrac{1}{2e^2}\)
即\(b_{max}=\cfrac{1}{2e^2}\),选A。
\(\fbox{例5}\)(公切线)
若曲线\(C_1:y=ax^2(a>0)\)与曲线\(C_2:y=e^x\)有公共切线,求参数\(a\)的取值范围。
分析:由\(y=ax^2\),得到\(y'=2ax\);由\(y=e^x\)得到\(y'=e^x\);
曲线\(C_1:y=ax^2(a>0)\)与曲线\(C_2:y=e^{-x}\)有公共切线,
设公切线与\(C_1:y=ax^2(a>0)\)相切于点\((x_1,ax_1^2)\),
公切线与\(C_1:y=e^x(a>0)\)相切于点\((x_2,e^{x_2})\),
则由切线斜率相等,可得\(2ax_1=e^{x_2}=\cfrac{e^{x_2}-ax_1^2}{x_2-x_1}\),
可得\(2x_2=x_1+2\);便于变量集中,
故由\(2ax_1=e^{x_2}\),分离参数得到\(a=\cfrac{e^{x_2}}{2x_1}=\cfrac{e^{\frac{x_1}{2}+1}}{2x_1}\)
令\(f(x)=\cfrac{e^{\frac{x}{2}+1}}{2x}\),即上式为\(a=f(x)(由图可看出x>0)\)由实数解,
转化为求函数\(f(x)\)的值域问题。
\(f'(x)=\cfrac{e^{\frac{x}{2}+1}\cdot \cfrac{1}{2}\cdot 2x-e^{\frac{x}{2}+1}\cdot 2}{(2x)^2}\),
\(=\cfrac{e^{\frac{x}{2}+1}\cdot(x-2)}{4x^2}\),
故\(x\in(0,2)\)上,\(f'(x)<0\),\(f(x)\)单调递减,
\(x\in(2,+\infty)\)上,\(f'(x)>0\),\(f(x)\)单调递增,
故\(f(x)_{极小}=f(x)_{min}=f(2)=\cfrac{e^2}{4}\);
故\(a\)的取值范围为\([\cfrac{e^2}{4},+\infty)\)。
\(\fbox{例6}\)
[2015.合肥一中月考]已知函数\(f(x)=lnx,g(x)=e^x\).
(1)确定方程\(f(x)=\cfrac{x+1}{x-1}\)实数根的个数。
(2)我们把与两条曲线都相切的直线叫作这两条曲线的公切线,试确定曲线\(y=f(x),y=g(x)\)公切线的条数,并证明你的结论。
分析:(1)由\(f(x)=\cfrac{x+1}{x-1}\)得到,\(lnx=\cfrac{x+1}{x-1}=1+\cfrac{2}{x-1}\),
即\(lnx-1=\cfrac{2}{x-1}\),由数转化到形,
在同一系中做出函数\(y=lnx-1\)和函数\(\cfrac{2}{x-1}\)的图像,
由图像可得,函数\(y=lnx-1\)和函数\(\cfrac{2}{x-1}\)的图像有两个交点,
故方程\(f(x)=\cfrac{x+1}{x-1}\)实数根的个数有两个。
(2)曲线\(y=f(x),y=g(x)\)公切线的条数有2个,证明如下:
设公切线与曲线\(y=f(x),y=g(x)\)分别相切于点\((m,lnm)\)和\((n,e^n)\),
由\(f'(x)=\cfrac{1}{x}\),\(g'(x)=e^{x}\)可得,
\(\begin{cases}\cfrac{1}{m}=e^n\\\cfrac{lnm-e^n}{m-n}=\cfrac{1}{m}\end{cases}\),
化简得,\((m-1)lnm=m+1\)
当\(m=1\)时,上式不成立;
当\(m\neq 1\)时,变形得到\(lnm=\cfrac{m+1}{m-1}\),
由(1)可知,方程\(lnm=\cfrac{m+1}{m-1}\)有2个实根,
即曲线\(y=f(x),y=g(x)\)公切线的条数有2个。
\(\fbox{例7}\)(2016-17宝鸡市第一次质量检测)
已知函数\(y=x^2\)的图像在点\((x_0,x_0^2)\)处的切线为\(l\),若\(l\)也与函数\(y=lnx\),\(x\in (0,1)\)的图像相切,则\(x_0\)必满足范围是(\(\hspace{2cm}\)).
A.\(0<x_0<\cfrac{1}{2}\) \(\hspace{2cm}\) B.\(\cfrac{1}{2}<x_0<1\) \(\hspace{2cm}\) C.\(\cfrac{\sqrt{2}}{2}<x_0<\sqrt{2}\) \(\hspace{2cm}\) D.\(\sqrt{2}<x_0<\sqrt{3}\)
分析:由切线\(l\)与函数\(y=x^2\)相切与点\((x_0,x_0^2)\),则得到切线的点斜式方程为:\(y-x_0^2=2x_0(x-x_0)\)
由切线\(l\)与函数\(y=lnx\)相切与点\((x_1,lnx_1)\),则得到切线的点斜式方程为:\(y-lnx_1=\cfrac{1}{x_1}(x-x_1)\)且\(x_1\in(0,1)\)
又两条切线是同一条直线,得到
\(\begin{cases} 2x_0=\cfrac{1}{x_1} \hspace{0.5cm} x_1\in(0,1) \hspace{1cm}①\\\ x_0^2=1-lnx_1 \hspace{3cm}②\end{cases}\)
法1:不等式性质法
由于\(x_1\in(0,1)\),由①得到\(x_0>\cfrac{1}{2}\);由于\(1-lnx_1>1\),由②得到\(x_0>1\),综合得到\(x_0>1\),故选\(D\).
法2:零点存在性定理
由方程组消掉\(x_1\)得到新方程\(x_0^2-ln2x_0-1=0\),令函数\(f(x_0)=x_0^2-ln2x_0-1\),
由零点存在性定理可得,\(D\) 是正确的。当然我们还可以结合二分法,得到更小的解的区间。
\(\fbox{例8}\)(2017凤翔中学高三理科第二次月考第12题)
将函数\(y=lnx\)的图像绕坐标原点\(O\)逆时针旋转角\(\theta\)后第一次与\(y\)轴相切,则角\(\theta\)满足的条件是()。
A、\(sin\theta=ecos\theta\) \(\hspace{2cm}\) B、\(esin\theta=cos\theta\) \(\hspace{2cm}\) C、\(esin\theta=1\) \(\hspace{2cm}\) D、 \(ecos\theta=1\)
分析:先仿上例3先求得过坐标原点与\(y=lnx\)相切的直线是\(y=\cfrac{1}{e}x\),切点是\((e,1)\),
设切线的倾斜角是\(\phi\),则\(tan\phi=\cfrac{1}{e}\),若切线绕坐标原点旋转角\(\theta\)后切线变成了\(y\)轴,
由\(cot\theta=tan\phi=\cfrac{1}{e}\)可得, \(\cfrac{cos\theta}{sin\theta}=\cfrac{1}{e}\),即\(sin\theta=ecos\theta\),故选A。
\(\fbox{例9}\)(2016日照模拟)
已知函数\(f(x)=e^x-mx+1\)的图像为曲线\(C\),若曲线\(C\)存在与直线\(y=ex\)垂直的切线,则实数\(m\)的取值范围是__________.
分析:由于曲线\(C\)存在与直线\(y=ex\)垂直的切线,设曲线的切线的切点坐标\((x_0,y_0)\),
则有\(f'(x_0)=e^{x_0}-m=-\cfrac{1}{e}\),即方程\(m=e^{x_0}+\cfrac{1}{e}\)有解,
故转化为求函数\(g(x_0)=e^{x_0}+\cfrac{1}{e}\)的值域,由于\(x_0\in R\),故\(g(x_0)\in (\cfrac{1}{e},+\infty)\),
故实数\(m\)的取值范围是\(m\in (\cfrac{1}{e},+\infty)\)。
\(\fbox{例10}\)(2016•广州模拟)
已知曲线\(C:f(x)=x^3-ax+a\),若过曲线\(C\)外一点\(A(1,0)\)引曲线\(C\)的两条切线,它们的倾斜角互补,则\(a\)的值为【 】
A、\(\cfrac{27}{8}\) \(\hspace{2cm}\) B、\(-2\) \(\hspace{2cm}\) C、\(2\) \(\hspace{2cm}\) D、 \(-\cfrac{27}{8}\)
分析:本题目如果总纠结要画出适合题意的图形,然后总结思路可能就浪费时间了。可以这样考虑,
设过曲线外的一点所引的两条切线的倾斜角分别是\(\alpha\)和\(\beta\),
则可知其对应的斜率为\(k_1=tan\alpha\)和\(k_2=tan\beta=tan(\pi-\alpha)=-tan\alpha\),故有\(k_1+k_2=0\)。
因此求解如下:
设过点\(A(1,0)\)的切线与曲线相切于点\((x_0,y_0)\),则由\(f'(x)=3x^2-a\),
得到\(\begin{cases}k=f'(x_0)=3x_0^2-a\\y_0=x_0^3-ax_0+a\\y-y_0=(3x_0^2-a)(x-x_0)\end{cases}\),
又由点\(A(1,0)\)在切线上得到\(0-(x_0^3-ax_0+a)=(3x_0^2-a)(1-x_0)\),化简整理得到\(2x_0^3-3x_0^2=0\),
解得\(x_0=0\)或者\(x_0=\cfrac{3}{2}\),
当\(x_0=0\)时,一条切线的斜率\(k_1=-a=tan\alpha\);
当\(x_0=\cfrac{3}{2}\)时,另一条切线的斜率\(k_2=\cfrac{27}{4}-a=tan\beta\),
由\(k_1+k_2=0\),得到\(\cfrac{27}{4}-2a=0\),解得\(a=\cfrac{27}{8}\),故选A。
\(\fbox{例11}\)(2016•福州模拟)
点\(P\)是曲线\(x^2-y-2ln\sqrt{x}=0\)上任意一点,则点\(P\)到直线\(4x+4y+1=0\)的最小距离是【 】
A、\(\cfrac{\sqrt{2}}{2}(1-ln2)\) \(\hspace{2cm}\) B、\(\cfrac{\sqrt{2}}{2}(1+ln2)\) \(\hspace{2cm}\) C、\(\cfrac{\sqrt{2}}{2}(\cfrac{1}{2}+ln2)\) \(\hspace{2cm}\) D、\(\cfrac{1}{2}(1+ln2)\)
分析:当在曲线上试图寻找一点,让它到直线的距离最小,思考不便于展开时,
不妨换位思考,让直线平行移动到和曲线相切得到一个切点,
那么所求距离就是切点到直线的点线距,或者是两条平行线之间的线线距。
解析:将函数化简整理为\(y=f(x)=x^2-lnx(x>0)\),
再设与已知直线平行的且与曲线相切的直线为\(4x+4y+c=0\),
切点为\((x_0,y_0)\),则由\(f'(x)=2x-\cfrac{1}{x}\),
得到\(\begin{cases}k=f'(x_0)=2x_0-\cfrac{1}{x_0}=-1①\\4x_0+4y_0+c=0②\\y_0=x_0^2-lnx_0③\end{cases}\),
解①得到\(x_0=-1(舍去)\)或\(x_0=\cfrac{1}{2}\),代入③得到\(y_0=\cfrac{1}{4}+ln2\),
故切点\((\cfrac{1}{2},\cfrac{1}{4}+ln2)\)到已知直线\(4x+4y+1=0\)的距离就是所要求解的距离。
故所求距离\(d=\cfrac{|4\times \cfrac{1}{2}+4\times(\cfrac{1}{4}+ln2)+1|}{\sqrt{4^2+4^2}}=\cfrac{\sqrt{2}}{2}(1+ln2)\)
\(\fbox{例12}\)(2017•潍坊模拟)
若存在过点\((1,0)\)的直线与曲线\(y=x^3\)和\(y=ax^2+\cfrac{15}{4}x-9\)都相切,则\(a\)等于【 】
A、\(-1\)或\(-\cfrac{25}{64}\) \(\hspace{2cm}\) B、\(-1\)或\(-\cfrac{21}{4}\) \(\hspace{2cm}\) C、\(-\cfrac{7}{4}\)或\(-\cfrac{25}{64}\) \(\hspace{2cm}\) D、 \(-\cfrac{7}{4}\)或\(7\)
分析:本题目属于公切线问题,可以先求得过点处的与\(y=x^3\)相切的直线,然后联立直线和抛物线(二次函数),利用\(\Delta=0\)来解决。
设过点\((1,0)\)的直线与曲线\(y=x^3\)相切于点\((x_0,y_0)\),由\(f'(x)=3x^2\)可得,
\(\begin{cases}k=f'(x_0)=3x_0^2 \\y_0=x_0^3 \\y-y_0=f'(x_0)(x-x_0) \end{cases}\),又点\((1,0)\)在切线上,故有\(0-x_0^3=3x_0^2(1-x_0)\),解得\(x_0=0\)或\(x_0=\cfrac{3}{2}\);
当\(x_0=0\)时,\(y_0=0\),即切点是\((0,0)\),斜率\(k=0\),故切线方程为\(y=0\),
与曲线\(y=ax^2+\cfrac{15}{4}x-9\)相切,消\(y\)得到\(ax^2+\cfrac{15}{4}x-9=0\),
利用\(\Delta=(\cfrac{15}{4})^2+4\times 9a=0\),解得\(a=-\cfrac{25}{64}\);
当\(x_0=\cfrac{3}{2}\)时,\(y_0=\cfrac{27}{8}\),即切点是\((\cfrac{3}{2},\cfrac{27}{8})\),斜率\(k=\cfrac{27}{4}\),
故切线方程为\(y-\cfrac{27}{8}=\cfrac{27}{4}(x-\cfrac{3}{2})\),
与曲线\(y=ax^2+\cfrac{15}{4}x-9\)相切,消\(y\)得到\(ax^2-3x-\cfrac{9}{4}=0\),
利用\(\Delta=(-3)^2-4\times a\times(-\cfrac{9}{4})=0\),解得\(a=-1\);
综上,\(a=-1\)或\(-\cfrac{25}{64}\),故选A。
反思总结:直线与三次曲线的相切问题,我们用导数解决;
直线与二次曲线(如圆、椭圆、双曲线、抛物线等)的相切问题,我们常用\(\Delta=0\)来解决。
\(\fbox{例13}\)(2017•青岛模拟)
设函数\(f(x)=ax-\cfrac{b}{x}\),曲线\(y=f(x)\)在点\((2,f(2))\)处的切线方程为\(7x-4y-12=0\),
(1)求\(f(x)\)的解析式;
(2)证明:曲线\(y=f(x)\)上任一点处的切线与直线\(x=0\)和直线\(y=x\)所围成的三角形的面积为定值,并求此定值.
解析:
(1)方程\(7x-4y-12=0\)可化为\(y=\cfrac{7}{4}x-3\),当\(x=2\)时,\(y=\cfrac{1}{2}\).
又\(f′(x)=a+\cfrac{b}{x^2}\),于是\(2a-\cfrac{b}{2}=\cfrac{1}{2}\),\(a+\cfrac{b}{4}=\cfrac{7}{4}\),解得\(a=1,b=3\),故\(f(x)=x-\cfrac{3}{x}\)。
(2)证明:设\(P(x_0,y_0)\)为曲线\(y=f(x)\)上任一点,
由\(y′=1+\cfrac{3}{x^2}\)知,
曲线在点\(P(x_0,y_0)\)处的切线方程为\(y-y_0=(1+\cfrac{3}{x_0^2})(x-x_0)\),
即\(y-(x_0-\cfrac{3}{x_0})=(1+\cfrac{3}{x_0^2})(x-x_0)\)。
令\(x=0\)得\(y=-\cfrac{6}{x_0}\),从而得切线与直线\(x=0\)的交点坐标为\((0,-\cfrac{6}{x_0})\);
令\(y=x\)得\(y=x=2x_0\),从而得切线与直线\(y=x\)的交点坐标为\((2x_0,2x_0)\).
所以点\(P(x_0,y_0)\)处的切线与直线\(x=0,y=x\)所围成的三角形的面积为\(S_{\Delta}=\cfrac{1}{2}|-\cfrac{6}{x_0}|\cdot |2x_0|=6\),
故曲线\(y=f(x)\)上任一点处的切线与直线\(x=0,y=x\)所围成的三角形的面积为定值,此定值为\(6\)。
\(\fbox{例14}\)(2017•渭南模拟)
已知\(f(x)=lnx\),\(g(x)=\cfrac{1}{2}x^2+mx+\cfrac{7}{2}(m<0)\),直线\(l\)与函数\(f(x),g(x)\)的图像都相切,且与\(f(x)\)图像的切点为\((1,f(1))\),则\(m\)的值为【 】
A、\(-1\) \(\hspace{2cm}\) B、\(-3\) \(\hspace{2cm}\) C、\(-4\) \(\hspace{2cm}\) D、 \(-2\)
解析:因为\(f′(x)=\cfrac{1}{x}\),所以直线\(l\)的斜率为\(k=f′(1)=1\),又\(f(1)=0\),故由点斜式得到切线的方程为\(y=x-1\)。
接下来求\(m\)的值,可以有两个思路,
其一,由\(y=x-1\)与\(g(x)=\cfrac{1}{2}x^2+mx+\cfrac{7}{2}(m<0)\)相切,联立得到方程组,利用\(\Delta =0\),解得\(m=4(舍去)\)或\(m=-2\)。
其二,由于\(g′(x)=x+m\),设直线\(l\)与\(g(x)\)的图像的切点为\((x_0,y_0)\),
则有\(\begin{cases}x_0+m=1\\y_0=x_0-1\\y_0=\cfrac{1}{2}x_0^2+mx_0+\cfrac{7}{2}(m<0)\end{cases}\),联立解得\(m=-2\)。故选D
\(\fbox{例14}\)(2017\(\cdot\)福建质检)
已知定义在R上的函数\(f(x)\)满足\(f(1-x)+f(1+x)=2\),且当\(x>1\)时,\(f(x)=\cfrac{x}{e^{x-2}}\),则曲线\(y=f(x)\)在\(x=0\)处的切线方程是_________________。
法1:利用函数的对称性,先求\(x<1\)时的函数解析式。
由于\(f(1-x)+f(1+x)=2\),则有\(f(x)+f(2-x)=2\),
故\(f(x)=2-f(2-x)\);
又当\(x<1\)时,\(2-x>1\)
即\(x<1\)时的解析式为
\(f(x)=2-f(2-x)=2-\cfrac{2-x}{e^{2-x-2}}=2-\cfrac{2-x}{e^{-x}}\),演示图像
则\(f'(x)=-\cfrac{-1\cdot e^{-x}-(2-x)\cdot(-e^{-x})}{(e^{-x})^2}=-\cfrac{1-x}{e^{-x}}\)
故\(f'(0)=-1\),又\(f(0)=0\),即切点为\((0 ,0)\),
由点斜式可得切线方程为:\(y=-x\)
法2:由\(f(1-x)+f(1+x)=2\),得到函数\(f(x)\)关于点\((1,1)\)中心对称;
令\(x=1\),得到\(f(0)+f(2)=2\),
又函数\(f(x)\)关于点\((1,1)\)中心对称;
故\(f'(0)=f'(2)\)
则\(f'(0)=f'(2)=f'(x)_{|x=2}=-1\),
又\(f(0)=2-f(2)=0\),即切点为\((0 ,0)\),
由点斜式可得切线方程为:\(y=-x\)
\(\fbox{例15}\)(2014\(\cdot\)江西卷)
若曲线\(y=e^{-x}\)上点\(P\)处的切线平行于直线\(2x+y+1=0\),则点\(P\)的坐标是__________。
分析:设点\(P(x_0,y_0)\),则由\(y'=-e^{-x}\)(此处是复合函数的求导,易错)可得,
点\(P\)处的切线斜率\(k=-e^{-x_0}=-2\),
则\(-x_0=ln2\),即\(x_0=-ln2\),
则\(y_0=e^{ln2}=2\),故点\(P\)的坐标是\((-ln2,2)\)。