输入图像大小为:W*W
卷积核大小为:F*F
stride步长大小为:S*S
padding 大小为:P*P
卷积之后的尺寸为N*N
N=(W-F+2P)/S+1
本文详细解析了卷积神经网络中,输入图像大小、卷积核大小、步长及填充对卷积层输出尺寸的影响,并给出了计算公式。
输入图像大小为:W*W
卷积核大小为:F*F
stride步长大小为:S*S
padding 大小为:P*P
卷积之后的尺寸为N*N
N=(W-F+2P)/S+1
转载于:https://www.cnblogs.com/code-wangjun/p/10325141.html
8882
1341

被折叠的 条评论
为什么被折叠?