二维图像卷积之后尺寸计算

本文探讨了二维图像经过卷积操作后尺寸变化的两种计算方法。第一种是直接取整,计算从第一个可取位置到最后一个可取位置的整数倍数;第二种是向上取整,确保包含所有可能的卷积位置。以宽度为例,图像宽度为w,卷积核宽度为fw,滑动步长为step。通过这两种方式,可以准确预测卷积后的图像尺寸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二维图像与卷积核相乘之后,尺寸会发生变化,
本文主要介绍卷积之后尺寸的两种计算方式。

以宽度为例,高度计算方式相同:
            图像宽度:w,卷积核宽度:fw,滑动步长:step

【第一种计算方式】
           直接取整: \frac{w-fw}{step} + 1

           解释:第一个可取位置索引为0,最后一个可取索引位置为w-fw,一共包含(w-fw)个间隔,
                      则(w-fw)个间隔对于滑动步长step一共\frac{w-fw}{step}(取整)个可取位置,再加上第一个以0为索引的位置,
                      因此一共\frac{w-fw}{step} + 1(取整)位置,即最终卷积之后的宽度。

【第二种计算方式】

          向上取整:\frac{w-fw+1}{step}
          解释:第一个可取位置索引为0,最后一个可取索引位置为w-fw,一共包含(w-fw+1)个索引位置,
                     则(w-fw+1)个位置相对于滑动步长step,一共\frac{w-fw+1}{step}个位置,如果不能整除,剩余小数部分表示
                     仍然存在一个可取的位置,因此向上取整,即为最终卷积之后宽度。

【sample】
        以w=7,fw=3,step=2为例
  图像可以表示为


1.第一种计算方式:
 \frac{w-fw}{step}+1=\frac{7-3}{2}+1=2+1=>3 

2.第二种计算方式:
\frac{w-fw+1}{step}=\frac{7-3+1}{2}=5/2=2.5=>3
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值