这几天学习了一下树链剖分,顺便写一下我的理解、
早上看了一下别人的讲解,云里雾里,终于算是搞懂了、
树链剖分是解决在树上进行插点问线,插线问点等一系列树上的问题
假如现在给你一棵树,然后没两条边之间有一条权值,有一些操作,1:x---y之间的最大权值是多少,2:改变x---y之间的权值
当前这样的操作有很多,如果直接用暴力的方法的话肯定不行,那么就要想一个好的方法,我们可以想一下能不能借助线段树解决,能不能想一种方法对树上的边进行编号,然后就变成区间了。那么我们就可以在线段树上进行操作了,树链剖分就是这样的一个算法。
当然编号不是简单的随便编号,如果我们进行随便的编号,然后建立一个线段树,如果要更新一个边的权值,是log2(n)的复杂度,而查找的话,我们要枚举x--y的之间的所有的边,假如我们随便以一个点为根节点进行编号,最大的长度是树的直径,这个值本身是比较大的,而在线段树上查找任意一个区间的复杂度也是log2(n),这样查找一次的时间复杂度比直接暴力还要高,所以很明显是不行的。
那么就要想想办法了,我们能不能把x--y之间的一些边一块儿查找,这就是关于树链剖分的重边和轻边,
重边:某个节点x到孩子节点形成的子树中节点数最多的点child之间的边,由定义发现除了叶子节点其他节点只有一条重边
重边是可以放在一块儿更新的,而有
性质:从根到某一点的路径上轻边、重边的个数都不大于logn。
所以这样查找的时间复杂度相当于log2(n)
其实树链剖分就是把边哈希到线段树上的数据结构。
实现的话很简单,用两个dfs处理数数的信息,重边以及轻边,然后就是一些线段树的操作了。
模板“:以spoj 375 为例
1 #include <cstdio> 2 #include <cstring> 3 #include <vector> 4 #include <algorithm> 5 using namespace std; 6 #define Del(a,b) memset(a,b,sizeof(a)) 7 const int N = 10005; 8 9 int dep[N],siz[N],fa[N],id[N],son[N],val[N],top[N]; //top 最近的重链父节点 10 int num; 11 vector<int> v[N]; 12 struct tree 13 { 14 int x,y,val; 15 void read(){ 16 scanf("%d%d%d",&x,&y,&val); 17 } 18 }; 19 tree e[N]; 20 void dfs1(int u, int f, int d) { 21 dep[u] = d; 22 siz[u] = 1; 23 son[u] = 0; 24 fa[u] = f; 25 for (int i = 0; i < v[u].size(); i++) { 26 int ff = v[u][i]; 27 if (ff == f) continue; 28 dfs1(ff, u, d + 1); 29 siz[u] += siz[ff]; 30 if (siz[son[u]] < siz[ff]) 31 son[u] = ff; 32 } 33 } 34 void dfs2(int u, int tp) { 35 top[u] = tp; 36 id[u] = ++num; 37 if (son[u]) dfs2(son[u], tp); 38 for (int i = 0; i < v[u].size(); i++) { 39 int ff = v[u][i]; 40 if (ff == fa[u] || ff == son[u]) continue; 41 dfs2(ff, ff); 42 } 43 } 44 #define lson(x) ((x<<1)) 45 #define rson(x) ((x<<1)+1) 46 struct Tree 47 { 48 int l,r,val; 49 }; 50 Tree tree[4*N]; 51 void pushup(int x) { 52 tree[x].val = max(tree[lson(x)].val, tree[rson(x)].val); 53 } 54 55 void build(int l,int r,int v) 56 { 57 tree[v].l=l; 58 tree[v].r=r; 59 if(l==r) 60 { 61 tree[v].val = val[l]; 62 return ; 63 } 64 int mid=(l+r)>>1; 65 build(l,mid,v*2); 66 build(mid+1,r,v*2+1); 67 pushup(v); 68 } 69 void update(int o,int v,int val) //log(n) 70 { 71 if(tree[o].l==tree[o].r) 72 { 73 tree[o].val = val; 74 return ; 75 } 76 int mid = (tree[o].l+tree[o].r)/2; 77 if(v<=mid) 78 update(o*2,v,val); 79 else 80 update(o*2+1,v,val); 81 pushup(o); 82 } 83 int query(int x,int l, int r) 84 { 85 if (tree[x].l >= l && tree[x].r <= r) { 86 return tree[x].val; 87 } 88 int mid = (tree[x].l + tree[x].r) / 2; 89 int ans = 0; 90 if (l <= mid) ans = max(ans, query(lson(x),l,r)); 91 if (r > mid) ans = max(ans, query(rson(x),l,r)); 92 return ans; 93 } 94 95 int Yougth(int u, int v) { 96 int tp1 = top[u], tp2 = top[v]; 97 int ans = 0; 98 while (tp1 != tp2) { 99 //printf("YES\n"); 100 if (dep[tp1] < dep[tp2]) { 101 swap(tp1, tp2); 102 swap(u, v); 103 } 104 ans = max(query(1,id[tp1], id[u]), ans); 105 u = fa[tp1]; 106 tp1 = top[u]; 107 } 108 if (u == v) return ans; 109 if (dep[u] > dep[v]) swap(u, v); 110 ans = max(query(1,id[son[u]], id[v]), ans); 111 return ans; 112 } 113 void Clear(int n) 114 { 115 for(int i=1;i<=n;i++) 116 v[i].clear(); 117 } 118 int main() 119 { 120 //freopen("Input.txt","r",stdin); 121 int T; 122 scanf("%d",&T); 123 while(T--) 124 { 125 int n; 126 scanf("%d",&n); 127 for(int i=1;i<n;i++) 128 { 129 e[i].read(); 130 v[e[i].x].push_back(e[i].y); 131 v[e[i].y].push_back(e[i].x); 132 } 133 num = 0; 134 dfs1(1,0,1); 135 dfs2(1,1); 136 for (int i = 1; i < n; i++) { 137 if (dep[e[i].x] < dep[e[i].y]) swap(e[i].x, e[i].y); 138 val[id[e[i].x]] = e[i].val; 139 } 140 build(1,num,1); 141 char s[200]; 142 while(~scanf("%s",&s) && s[0]!='D') 143 { 144 int x,y; 145 scanf("%d%d",&x,&y); 146 if(s[0]=='Q') 147 printf("%d\n",Yougth(x,y)); 148 if (s[0] == 'C') 149 update(1,id[e[x].x],y); 150 } 151 Clear(n); 152 } 153 return 0; 154 }