Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
思路:
类似于
leetcode-62-Unique Paths中提到的方法,仅需判断当前格子是否是障碍即可。
如果是第一行或者第一列的障碍,那么将它之后所有格子置为0。
如果不是第一行或者第一列的话,仅需将它置为0。
int uniquePathsWithObstacles(vector<vector<int>>& grid) { //类似没有障碍的方法:将有障碍的地方置为0; if (grid.empty())return 0; int row = grid.size(); int col = grid[0].size(); if (grid[0][0] == 1)return 0; for (int i = 0; i < col;i++)//处理第一行 { if (grid[0][i] == 0)grid[0][i] = 1; else if (grid[0][i] == 1) { for (int j = i; j < col; j++) grid[0][j] = 0;//i之后都置为0; i = col; } } for (int i = 1; i < row; i++)//处理第一列 { if (grid[i][0] == 0)grid[i][0] = 1; else if (grid[i][0] == 1) { for (int j = i; j < row; j++) grid[j][0] = 0;//i之后都置为0; i = row; } } for (int i = 1; i < row; i++) { for (int j = 1; j < col; j++) { if (grid[i][j] == 0)//不是障碍 { grid[i][j] = grid[i - 1][j] + grid[i][j - 1]; } else if(grid[i][j] == 1)grid[i][j] = 0; } } return grid[row - 1][col - 1]; }