洛谷P4550 收集邮票(概率期望)

传送门

 

神仙题啊……这思路到底是怎么来的……

ps:本题是第$k$次买邮票需要$k$元,而不是买的邮票标号为$k$时花费$k$元

我们设$g[i]$表示现在有$i$张,要买到$n$张的期望张数,设$P(x,i)$表示买$x$次能从$i$张买到$n$张的概率,则有$$g[i]=\sum_{x=0}^\infty x\times P(x,i)$$

然后考虑一下递推关系式,有$$g[i]=g[i+1]+\frac{n}{n-i},g[n]=0$$

于是就可以愉快的递推了

然后设$f[i][j]$表示现在有$i$张邮票,下一张邮票要花$j$元,买到$n$张的期望花费。不难发现如下的递推式$$f[i][j]=j+f[i][j+1]\times \frac{i}{n}+f[i+1][j+1]\times \frac{n-i}{i}$$

然而因为$j$可能是无限大,所以我们没办法简单的递推。

于是换一个角度思考,我们考虑在$f[i][j]$的情况下还需要买几次才能够买齐,则有$$f[i][j]=\sum_{x=0}^\infty (j+(j+1)+...+(j+x-1))\times P(x,i)$$

其中$x$表示枚举次数,小括号里是$x$次购买所需的花费

继续推$$f[i][j]=\sum_{x=0}^\infty \frac{x(2j+x-1)}{2} \times P(x,i)$$

然后把$j+1$带进去,可以得出$$f[i][j+1]-f[i][j]=\sum_{x=0}^\infty x\times P(x,i)=g[i]$$

然后再考虑一下原来的递推公式$$f[i][j]=j+f[i][j+1]\times \frac{i}{n}+f[i+1][j+1]\times \frac{n-i}{i}$$

$$f[i][j]=j+(f[i][j]+g[i])\times \frac{i}{n}+(f[i+1][j]+g[i+1])\times \frac{n-i}{i}$$

然后移项之后可得$$f[i][j]=\frac{(j+g[i]\times \frac{i}{n}+(f[i+1][j]+g[i+1])\times \frac{n-i}{i})\times n}{n-i}$$

然后考虑一下,因为答案是$f[1][0]$,所以所有$j$不等于$0$的情况对我们都没有用,于是可以把第二维省略,只考虑$j=0$的情况

$$f[i]=\frac{(j+g[i]\times \frac{i}{n}+(f[i+1]+g[i+1])\times \frac{n-i}{i})\times n}{n-i}$$

边界条件为$f[n]=0$

然后就可以直接递推了

 1 //minamoto
 2 #include<cstdio>
 3 const int N=10005;
 4 double f[N],g[N],m;int n;
 5 int main(){
 6     scanf("%d",&n),f[n]=g[n]=0,m=n;
 7     for(int i=n-1;i>=0;--i) g[i]=g[i+1]+m/(m-i);
 8     for(int i=n-1;i>=0;--i)
 9     f[i]=((f[i+1]+g[i+1])*(m-i)/m+g[i]*i/m+1.0)*m/(m-i);
10     printf("%.2lf\n",f[0]);
11     return 0;
12 }

 

转载于:https://www.cnblogs.com/bztMinamoto/p/9792416.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值