topcoder srm 685 div1

problem1 link

依次枚举每个元素$x$,作为$S$中开始选择的第一个元素。对于当前$S$中任意两个元素$i,j$,若$T[i][j]$不在$S$中,则将其加入$S$,然后继续扩展;若所有的$T[i][j]$都在$S$中,则结束扩展。每次扩展结束之后保存$|S|$的最小值。

problem2 link

总的思路是搜索,分别枚举每一条边是在哪个集合中,进行如下的优化:

(1)使用并查集,当其中两个集合都联通时结束;当有一个集合联通时,直接判断剩下所有的边加入另一个集合能否使得另一个集合联通;

(2)如果当前剩下所有的边都加入到其中一个集合都不能使其联通时,结束搜索返回;

(3)当前边加入第一个集合使其联通分量减少时才进行加入的操作,否则不再继续搜索下去,而将其直接加入另一个集合。

problem3 link

随即生成1000个点数为12个图,然后计算最小生成树的个数。假设可以从中选出四个(可能是相同的)然后串联起来,那么答案就是$A_{1}*A_{2}*A_{3}*A_{4}$。$A_{i}$为选出的第$i$个图的最小生成树的个数。

 

code for problem1

#include <algorithm>
#include <vector>

class MultiplicationTable2 {
 public:
  int minimalGoodSet(const std::vector<int> &a) {
    int n2 = static_cast<int>(a.size());
    int n = 1;
    while (n * n != n2) {
      ++n;
    }
    std::vector<std::vector<int>> g(n, std::vector<int>(n));
    auto Compute = [&](int x) {
      if (g[x][x] == x) {
        return 1;
      }
      std::vector<int> s;
      std::vector<bool> h(n);
      s.push_back(x);
      h[x] = true;
      while (true) {
        bool ok = true;
        std::vector<int> ns = s;
        for (size_t i = 0; i < s.size(); ++i) {
          for (size_t j = 0; j < s.size(); ++j) {
            int k = g[s[i]][s[j]];
            if (!h[k]) {
              h[k] = true;
              ns.push_back(k);
              ok = false;
            }
          }
        }
        if (ok) {
          break;
        }
        s = ns;
      }
      return static_cast<int>(s.size());
    };
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        g[i][j] = a[i * n + j];
      }
    }
    int result = n;
    for (int i = 0; i < n; ++i) {
      result = std::min(result, Compute(i));
    }
    return result;
  }
};

code for problem2

#include <string>
#include <vector>

constexpr int kMaxN = 10;

struct UnionSet {
  int a[kMaxN];
  int cnt;
  int n;

  void Init(int n) {
    this->n = n;
    for (int i = 0; i < n; ++i) {
      a[i] = i;
    }
    cnt = 0;
  }

  int Get(int x) {
    if (a[x] != x) {
      a[x] = Get(a[x]);
    }
    return a[x];
  }

  bool Update(int x, int y) {
    x = Get(x);
    y = Get(y);
    if (x == y) {
      return false;
    }
    if (x < y) {
      a[y] = x;
    } else {
      a[x] = y;
    }
    ++cnt;
    return true;
  }
  bool OK() { return cnt == n - 1; }
};

int n, m;
std::vector<int> a, b;

bool Check(UnionSet s, int id) {
  if (s.OK()) {
    return 1;
  }
  if (id >= m) {
    return 0;
  }
  for (int i = id; i < m && !s.OK(); ++i) {
    s.Update(a[i], b[i]);
  }
  return s.OK();
}

bool Dfs(int id, UnionSet s1, UnionSet s2) {
  if (s1.OK() && s2.OK()) {
    return 1;
  }
  if (s1.OK()) {
    return Check(s2, id);
  }
  if (s2.OK()) {
    return Check(s1, id);
  }

  if (!Check(s1, id) || !Check(s2, id)) {
    return false;
  }

  if (id >= m) {
    return false;
  }

  while (id < m) {
    if (s1.Get(a[id]) != s1.Get(b[id])) {
      UnionSet new_s1 = s1;
      new_s1.Update(a[id], b[id]);
      if (Dfs(id + 1, new_s1, s2)) {
        return 1;
      }
    }
    s2.Update(a[id], b[id]);
    ++id;
  }
  return false;
}

class FoxAirline2 {
 public:
  std::string isPossible(int node_number, const std::vector<int> &ea,
                         const std::vector<int> &eb) {
    n = node_number;
    a = ea;
    b = eb;
    m = static_cast<int>(a.size());

    UnionSet s1, s2;
    s1.Init(n);
    s2.Init(n);
    if (Dfs(0, s1, s2)) {
      return "Possible";
    }
    return "Impossible";
  }
};

code for problem3

#include <cstdlib>
#include <ctime>
#include <unordered_map>
#include <vector>

class MSTCounter {
 public:
  static int Pow(long long a, int b, int mod) {
    long long result = 1;
    while (b > 0) {
      if (b % 2 == 1) {
        result = result * a % mod;
      }
      a = a * a % mod;
      b /= 2;
    }
    return static_cast<int>(result);
  }
  static int Solver(const std::vector<std::vector<bool>> &g, int mod) {
    int n = static_cast<int>(g.size());
    std::vector<std::vector<int>> a(n, std::vector<int>(n));
    for (int i = 0; i < n; ++i) {
      for (int j = 0; j < n; ++j) {
        if (i != j && g[i][j]) {
          a[i][j] = mod - 1;
          a[i][i] += 1;
        }
      }
    }
    bool tag = false;
    for (int i = 1; i < n; ++i) {
      int k = 0;
      for (int j = i; j < n; ++j) {
        if (a[j][i] != 0) {
          k = j;
          break;
        }
      }
      if (i != k) {
        tag = !tag;
        std::swap(a[i], a[k]);
      }
      for (int j = i + 1; j < n; ++j) {
        long long t = 1ll * a[j][i] * Pow(a[i][i], mod - 2, mod) % mod;
        for (int k = i; k < n; ++k) {
          a[j][k] = static_cast<int>(mod - t * a[i][k] % mod + a[j][k]) % mod;
        }
      }
    }
    long long result = 1;
    for (int i = 1; i < n; ++i) {
      result = result * a[i][i] % mod;
    }
    if (tag) {
      result = mod - result;
    }
    return static_cast<int>(result);
  }
};

static constexpr int kMod = 1000000007;
static constexpr int kNode = 12;
static constexpr int kSampleNumber = 1024;

struct Graph {
  std::vector<std::vector<bool>> g;
  int result;

  void Construct() {
    g.resize(kNode);
    for (int i = 0; i < kNode; ++i) {
      g[i].resize(kNode);
    }
    for (int i = 0; i < kNode; ++i) {
      for (int j = i + 1; j < kNode; ++j) {
        bool t = (std::rand() & 1) == 1;
        g[i][j] = g[j][i] = t;
      }
    }
    result = MSTCounter::Solver(g, kMod);
  }
  void GetResult(int n, int start, std::vector<int> *result) {
    for (int i = 0; i < kNode; ++i) {
      for (int j = i + 1; j < kNode; ++j) {
        if (g[i][j]) {
          int u = i + start;
          int v = j + start;
          result->push_back(u * n + v);
        }
      }
    }
  }
};

Graph graph[kSampleNumber];

class InverseMatrixTree {
 public:
  std::vector<int> constructGraph(int r) {
    if (r == 0) {
      return {2};
    }
    std::srand(std::time(nullptr));
    for (int i = 0; i < kSampleNumber; ++i) {
      graph[i].Construct();
    }
    std::unordered_map<int, std::pair<int, int>> mapper;
    for (int i = 0; i < kSampleNumber; ++i) {
      for (int j = i; j < kSampleNumber; ++j) {
        int key =
            static_cast<int>(1ll * graph[i].result * graph[j].result % kMod);
        if (key != 0) {
          mapper[key] = {i, j};
        }
      }
    }
    for (const auto &e : mapper) {
      int key0 = e.first;
      int key1 = static_cast<int>(1ll * r *
                                  MSTCounter::Pow(key0, kMod - 2, kMod) % kMod);
      if (mapper.count(key1)) {
        int t[4] = {e.second.first, e.second.second, mapper[key1].first,
                    mapper[key1].second};
        int n = kNode * 4;
        std::vector<int> result = {n};
        for (int i = 0; i < 4; ++i) {
          graph[t[i]].GetResult(n, kNode * i, &result);
          if (i > 0) {
            int u = kNode * i;
            int v = u - 1;
            result.push_back(u * n + v);
          }
        }
        return result;
      }
    }
    return {};
  }
};

 

参考

http://uoj.ac/problem/75

http://vfleaking.blog.uoj.ac/blog/180

转载于:https://www.cnblogs.com/jianglangcaijin/p/6950049.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值