[LeetCode] Edit Distance 解题报告

本文深入探讨了编辑距离问题的解决方法,包括解题思路、二维动态规划算法及其优化,详细解释了如何通过动态规划计算两个字符串之间的最小编辑距离。文章还提供了具体的代码实现和常见错误分析,帮助读者理解和掌握该问题的解决策略。
摘要由CSDN通过智能技术生成

Given two words   word1   and   word2 , find the minimum number of steps required to convert   word1   to   word2 . (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
» Solve this problem

[解题思路]
刚看到这个题的时候,首先想到的是求最大公共子串,然后用最长字符串的长度减去最大公共子串长度,并写了code,但是随后测试case的时候,发现有问题。
比如A= “ab”, B="bc", 最大子串为“b”, 长度为1。但是如果把A转成B,需要2步,减a加c。
可见,最长子串并没有考虑到子串的差异,有可能带来多个操作。
解法仍然是二维DP,只不过转换方程有变化。
如果是求最长子串,方程是:
                    
dp[i][j] =  dp[i-1][j-1] +1  if (A[i] == B[j])
           or = max(dp[i][j-1], dp[i-1][j]);
初始条件: dp[0][j] = 0, dp[i][0] = 0

但对于编辑距离的话, 当我们要计算d(i,j)时,即计算A(i)到B(j)之间的编辑距离, 此时,设A(i)形式是somestr1c;B(i)形如somestr2d的话,
      将somestr1变成somestr2的编辑距离已知是d(i-1,j-1)
将somestr1c变成somestr2的编辑距离已知是d(i,j-1)
将somestr1变成somestr2d的编辑距离已知是d(i-1,j)
那么利用这三个变量,就可以递推出d(i,j)了:
如果c==d,显然编辑距离和d(i-1,j-1)是一样的
如果c!=d,情况稍微复杂一点,
  1. 如果将c替换成d,编辑距离是somestr1变成somestr2的编辑距离 + 1,也就是d(i-1,j-1) + 1
  2. 如果在c后面添加一个字d,编辑距离就应该是somestr1c变成somestr2的编辑距离 + 1,也就是d(i,j-1) + 1
  3. 如果将c删除了,那就是要将somestr1编辑成somestr2d,距离就是d(i-1,j) + 1
那最后只需要看着三种谁最小,就采用对应的编辑方案了。
递推公式出来了:
dp[i][j] =  dp[i-1][j-1]   if (A[i] == B[j])
           or = min(dp[i][j-1], dp[i-1][j], dp[i-1][j-1]) +1;
      初始条件: dp[0][j] = j and dp[i][0] = i  

[Code]
也可以用二维数组,这里我用两个滚动数组来计算了。省事。
1:   int minDistance(string word1, string word2) {  
2: // Start typing your C/C++ solution below
3: // DO NOT write int main() function
4: if(word1.size() < word2.size())
5: word1.swap(word2);
6: string& bigStr = word1;
7: string& smallStr = word2;
8: int * matchUp = new int[20000];
9: int* matchDown = new int[20000];
10: for(int i=0; i<= smallStr.size(); i++)
11: {
12: matchUp[i] = 0;
13: matchDown[i] = i;
14: }
15: for(int i=1; i<=bigStr.size(); i++)
16: {
17: matchUp[0] = i;
18: for(int j= 1; j<=smallStr.size(); j++)
19: {
20: if(bigStr[i-1] == smallStr[j-1])
21: {
22: matchUp[j] = matchDown[j-1];
23: }
24: else
25: {
26: matchUp[j] = min(matchDown[j], matchDown[j-1]);
27: matchUp[j] = min(matchUp[j], matchUp[j-1]) +1;
28: }
29: }
30: int* temp = matchUp;
31: matchUp = matchDown;
32: matchDown = temp;
33: }
34: return matchDown[smallStr.size()];
35: }

[已犯错误]
1. Line 4~7
    关于交换字符串的实现,一开始的实现是

        string& bigStr = word1.size() > word2.size()? word1: word2;
        string& smallStr = word1.size() < word2.size()? word1: word2;
   这里的问题是,第一,如果word1 和word2的长度相等,则bigStr和smallStr都指向了word2.
   然后, 改成了

        string& bigStr = word1;
        string& smallStr = word2;
        if(word1.size() < word2.size())
        {
               string& temp = bigStr;
               bigStr = smallStr;
               smallStr = temp;
         }
    这里的问题,是对象的引用是没法交换的,这段代码的结果是,bigStr和smallStr都指向了word1 。要交换还得用指针。


2. Line 13, 17
    初始条件。第17行,最初忘了写,结果老是过不了。
3. Line 20
   最初版本是 (bigStr[i] == smallStr[j]),忽略了i,j作为长度的标识来使用,如果需要作为index来用,需要减1.
4. Line 34
   最初版本是return matchUp[smallStr.size()];  这个错误非常可笑,尤其是Line 30~32已经把matchUp和matchDown做了交换。

总的来说,这题比较有意思,但是也犯了很多可笑的错误。c++好久没碰了,很多概念都忘了。


Update: 7/2/2013. Remove unnecessory code

1:  int minDistance(string word1, string word2) {   
2: int * matchUp = new int[20000];
3: int* matchDown = new int[20000];
4: for(int i=0; i<= smallStr.size(); i++)
5: {
6: matchUp[i] = 0;
7: matchDown[i] = i;
8: }
9: for(int i=1; i<=word1.size(); i++)
10: {
11: matchUp[0] = i;
12: for(int j= 1; j<=word2.size(); j++)
13: {
14: if(word1[i-1] == word2[j-1])
15: {
16: matchUp[j] = matchDown[j-1];
17: }
18: else
19: {
20: matchUp[j] = min(matchDown[j], matchDown[j-1]);
21: matchUp[j] = min(matchUp[j], matchUp[j-1]) +1;
22: }
23: }
24: int* temp = matchUp;
25: matchUp = matchDown;
26: matchDown = temp;
27: }
28: return matchDown[word2.size()];
29: }

转载于:https://www.cnblogs.com/codingtmd/archive/2012/12/21/5079009.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值