勿忘初衷

Talk is cheap, show me the code

自动驾驶课程笔记

MIT 自动驾驶课程的一些笔记,课程链接 https://selfdrivingcars.mit.edu 自动驾驶的乐观与悲观 乐观主义者: 1 拯救生命(每年有130万人死于车祸)      原因:酒驾、吸毒、分心、疲劳 2 降低拥有私人汽车的比例      增加流通性和使用率  ...

2018-08-31 11:24:08

阅读数 154

评论数 0

工业界怎样评估一个问题是否适合用NLP解决

整理于论文 On the Challenges of Translating NLP Research into Commercial Products 1 首先确定商业问题是什么:潜在用户是谁,要解决什么问题,定义问题的输入与输出。 2 确定这个问题是否需要用统计方法的N...

2017-09-18 15:22:56

阅读数 420

评论数 0

UTAustinX: UT.5.04x LAFF: Linear Algebra - Foundations to Frontiers 课程笔记

去年10月份学线性代数时的课程笔记 Week 2 Linear Transformations and Matrices 函数f(x)是线性变换的充要条件: 1 f(ax) = af(x)             (a是常数) 2 f(x+y) = f(x) + f(y) ...

2017-09-15 21:13:59

阅读数 265

评论数 0

《人类简史》读书笔记

半年前的读书笔记了,拿来更新一下博客。 1 人类是遵从进化论诞生的。 2 人曾经有很多“同族”,但最后都被“智人”“灭掉”了。 3 智力的发达,远古人类付出两个代价:首先是花更多时间寻找食物,其次是肌肉退化萎缩。(能量供给的角度得出的结论) 4 直立行走,从而解放双手,进而使用工具。 ...

2017-09-15 20:49:24

阅读数 462

评论数 0

Stanford CS224n: Natural Language Processing with Deep Learning 课程笔记

Stanford CS224n: Natural Language Processing with Deep Learning  课程主页:http://web.stanford.edu/class/cs224n/ 已完成的课程作业代码:https://github.com/xingjia...

2017-06-03 11:21:01

阅读数 2697

评论数 0

Writing in the Sciences 课程笔记(论文的组织和写作)

4.2 写作过程的步骤 1 写作前的构思 收集、综合和组织信息 头脑风暴take-home message 离开电脑,理清思路 构造一个大纲 2 写初稿 用一个有组织的方式,把你的事实和想法放在一起 3 修改 把你的论文大声的读出来(大脑对读出来的词和写出来的词处理方式是不一样的!) 去掉clut...

2016-11-01 19:37:52

阅读数 564

评论数 0

Writing in the Sciences 课程笔记 (导论、句子和段落)

最近学完了 stanford 大学 Kristin Sainani 教授的 Writing in the Sciences 课程,收货很大!对于要做英语论文写作的同学,个人强烈推荐。即使不写论文,感觉对英语写作,甚至中文写作,个人说话时逻辑表达,都有很大帮助。 课程可以在网上免费学习,网址: h...

2016-11-01 17:00:47

阅读数 1096

评论数 1

Writing in the Sciences 课程笔记 (如何审稿)

首要的,注意语气! 一些建议: 避免批评作者!批评论文本身。不要泛泛而谈;指出具体的错误。尽可能使用积极而不是消极的语言。例如:"The paper is poorly written." 可改为 "The writing and presentation co...

2016-11-01 16:20:46

阅读数 397

评论数 0

《学术研究,你的成功之道》 读书笔记

这本凌晓峰和杨强老师写的,《学术研究,你的成功之道》,干货满满的探讨和指导了与研究有关的许多事情。读完之后,受益匪浅,诚心推荐给大家。 一些读书笔记,记录在这里。 第一章 兴趣是研究的动力,创新是研究的核心,影响力是研究的成绩单,这三者相辅相成,相得益彰,是研究的本质。 研究者的生活: ...

2016-08-26 20:25:17

阅读数 2666

评论数 0

Leetcode 解题报告

据说刷完leetcode是准备编程面试的第一步。想到明年可能就要开始找工作了,先准备着吧。 计划今年11月份前做完,大概平均每天2-3题,难度应该不大,贵在坚持! 代码放在github上,地址:https://github.com/xingjian-f/Leetcode-solution 简略解题...

2016-06-20 15:58:43

阅读数 1480

评论数 0

《机器学习(周志华)》 阅读笔记

1 绪论1.1 引言(什么是机器学习:让计算机通过已有的经验进行学习,做出归纳和判断。)1.2 基本术语尽管训练样本集只是样本空间的一个很小的采样,我们仍然希望它能很好的反应出样本空间的特性,否则就很难期望在训练集上学得的模型能在整个样本空间上都工作很好。(因此,要想模型能够准确的预测未见过的样本...

2016-06-14 14:48:52

阅读数 3923

评论数 1

《机器学习(周志华)》 习题9.4参考答案

实现K均值算法。。。 书上的例子是错的!那个数据集,用书上选的那几个初始点,则一开始就是收敛的。 实现时,顺便学了matplotlib.animation,可以把聚类过程用动态图显示出来。 代码如下: # coding: utf-8 import pandas as pd import nump...

2016-06-04 21:59:34

阅读数 958

评论数 0

《机器学习(周志华)》习题11.1 参考答案

试编程实现Relief算法,并考察其在西瓜3.0上的结果。 # coding: utf-8 import numpy as np input_path = "西瓜数据集3.csv" file = open(input_path.decode('utf-8')) fileda...

2016-05-30 18:36:38

阅读数 1603

评论数 0

CNN 可视化结果分析

可视化结果分别从以下几个角度做分析: 1 看每个卷积层经过激活函数(relu)后的输出图像 第一个卷积层的结果(相对比较容易懂): 为了方便人眼观察,对每一幅图的像素值都做了一个放大,做法是除以这幅图的最大像素值然后乘以255。灰度图中越亮的部分,就说明原来的值越大。注意,这样的做法导致,不...

2016-04-28 13:12:34

阅读数 4517

评论数 5

Deep Learning (Ian Goodfellow, Yoshua Bengio and Aaron Courville) 阅读笔记

Ian Goodfellow, Yoshua Bengio and Aaron Courville 合著的《Deep Learning》 终于写完了,并且放在网上可以在线免费阅读。网址:http://www.deeplearningbook.org 一些笔记整理于此。

2016-04-23 11:15:54

阅读数 6745

评论数 0

CNN 识别图形验证码

用卷积神经网络预测可变长的验证码,模型用的谷歌的这篇《Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks》。 代码在github上:https://g...

2016-04-13 18:34:01

阅读数 6240

评论数 0

《机器学习(周志华)》 习题5.5答案

编程实现标准BP算法(sgd)和累积BP算法(fullbatch),在西瓜3.0上训练一个单隐层网络,并进行比较。 需要先把字符串转成数字,这里用one-hot。把二分类问题看成多分类问题的特例,然后用softmax。最终模型在训练集上可达到100%准确率,并且在西瓜3.0@上也可以达到100%...

2016-04-05 20:24:26

阅读数 1832

评论数 0

《机器学习(周志华)》习题3.3答案

编程实现对率回归,并给出西瓜数据集3.0@上的结果。 对率回归即逻辑回归,可以看做没有隐藏层的,用sigmoid做激活函数,crossentropy做cost(不加regularization)的神经网络。 本题用theano实现,调参时,learning rate 设为1,更大则cost会出...

2016-04-05 13:59:19

阅读数 3213

评论数 1

《机器学习(周志华)》习题10.1 答案

编程实现K邻近分类器,在西瓜数据集3.0@(属性只有密度与含糖率)上,比较其分类边界与决策树分类边界之异同。 KNN决策面图如下:

2016-04-03 14:30:01

阅读数 2619

评论数 0

《机器学习 (周志华)》习题7.3答案

编程实现拉普拉斯修正的朴素贝叶斯,西瓜3.0训练集,“测1”样本测试。 不加拉普拉斯修正跑的数据,部分和书上不一致(P(蜷缩,是)和P(凹陷,是)),经检查是书中错误。 代码如下: # coding: utf-8 import math import numpy as np file = ope...

2016-04-01 15:41:47

阅读数 2044

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭