函数递归调用,本质还是依托于栈,栈具有后进先出的特点,可以很好的实现回溯。
八皇后问题是典型的运用回溯思为解决问题的例子。
code:
#include <stdio.h> #define N 8 typedef struct _tag_Pos { int ios; int jos; } Pos; static char board[N+2][N+2]; static Pos pos[] = { {-1, -1}, {-1, 0}, {-1, 1} }; static int count = 0; void init(void) { int i = 0; int j = 0; for(i=0; i<N+2; i++) { board[0][i] = '#';//横边界 board[N+1][i] = '#';//横边界 board[i][0] = '#';//竖边界 board[i][N+1] = '#';//竖边界 } for(i=1; i<=N; i++) { for(j=1; j<=N; j++) { board[i][j] = ' ';//棋盘用空格 } } } void display() { int i = 0; int j = 1; for(i=0; i<N+2; i++) { for(j=0; j<N+2; j++) { printf("%c", board[i][j]); } printf("\n"); } } int check(int i, int j) { int ret = 1; int p = 0; for(p=0; p<3; p++) { int ni = i; int nj = j; while( ret && (board[ni][nj] != '#') )//3个方向,不是边界 { ni = ni + pos[p].ios; nj = nj + pos[p].jos; ret = ret && (board[ni][nj] != '*');//不是皇后 }//如果满足,返回1,表示该点可以放置皇后 } return ret; } void find(int i) { int j ; if( i > N ) { count++; printf("Solution: %d\n", count); display(); //getchar(); } else { for(j=1; j<=N; j++) { if( check(i, j) ) { board[i][j] = '*';//第一步:放置皇后,如果放置符合要求,递归会把正确的打印出来 find(i+1); board[i][j] = ' ';//第二步 :如果第一步放置的位置符合要求,把之前放置皇后的位置清空,因为皇后的位置已经通过递归正确的display了,这里清除不影响, //如果第一步放置的皇后位置不正确,这里的清空就是回溯 } } } } int main() { init(); find(1); return 0; }
一共92种解法。
首先为八皇后自设定了边界,所以二维数组的大小为 [N+2] [N+2].然后直角坐标系以左上方开始。
判断皇后是否可以放置,即为三个方向的判断:
所以,如果判断左上方,坐标是(-1,-1),依次循环可以无限延伸左上方,直到边界或者有皇后停止,
同理,正上方就是(-1,0),右上方就是(-1,1)。
我们可以更改默认棋盘的空格为数字1-8,这样可以显示的观察皇后的位置:
find函数加入一个缓存变量:
输出结果:
使用递归回溯是解决八皇后问题的有效方法,这样的代码比较简短易懂。
使用递归的方式,就要有递归的思想,不要陷入递归的细节无法自拔。