前言
在高中数学教学实践中,有一种使用频度比较高的数学方法,叫分离参数法,她和许多数学素材有关联,高三学生大多都耳熟能详,但对其具体的来由和需要注意的问题却不是很清楚,本博文试着对此做个总结,以廓清我们认识上的误区,帮助我们提高教学,也帮助学生顺利掌握这一方法。
一、方法定义
引例:(2018宝鸡市二检理科第10题)关于\(x\)的方程\(\sqrt{3}sin2x+cos2x-k-1=0\)在\([0,\cfrac{\pi}{2}]\)内有两个实数根,则\(k\)的取值范围是【\(\hspace{2em}\)】。
A.\((1,2)\) \(\hspace{2cm}\) B.\([0,2)\) \(\hspace{2cm}\) C.\([0,1)\) \(\hspace{2cm}\) D.\([-2,1)\)
\(\hspace{2em}\)分析:遇到这样的题目,我们一般是这样做的,先转化为\(k+1=2sin(2x+\frac{\pi}{6}),x\in [0,\cfrac{\pi}{2}]\),然后分别作出函数\(y=k+1\)和函数\(y=2sin(2x+\frac{\pi}{6}),x\in [0,\cfrac{\pi}{2}]\)的图像,利用图像就可以知道,要使得两个函数有两个交点,需要满足\(1\leq k+1<2\),解得\(0\leq k<1\),故选C。
需要注意的是,上述变形中,当将原方程转化为\(k+1=2sin(2x+\frac{\pi}{6})\),就已经将参数和自变量分离开了,这样的方法自然就叫分离参数法。
二、使用原因
我们借用上例说事,像这样的方程由于含有\(sin2x\)等,我们就称为超越方程,意思是不能像解\(x^2+3x+2=0\)这样的代数方程一样把她解出来。从数的角度行不通,那就只能考虑从形的角度了,如果我们设函数为\(y=\sqrt{3}sin2x+cos2x-k-1\),那么这个函数就不太好作图,但是如果分离成\(k+1=2sin(2x+\frac{\pi}{6})\),则原方程的实数根的个数问题,就自然转化为两个函数\(y=k+1\)和\(y=2sin(2x+\frac{\pi}{6})\)的图像的交点的个数问题了,而且这两个函数的图像都很好作图,一下子就把问题的难度降下来了。可以这样说,分离参数法往往是我们从形的角度思考的前奏。通过这个例子,我们初步体会到分离常数法的优越性。
三、使用范围
再看个题目的解答,然后我们回答这个问题。
案例1【2017西安模拟】已知函数\(f(x)=kx^2-lnx\)有两个零点,求参数\(k\)的取值范围【\(\hspace{2em}\)】。
A、\(k>\cfrac{e}{2}\) \(\hspace{2cm}\) B、\(0<k<\sqrt{e}\) \(\hspace{2cm}\) C、\(k>\cfrac{\sqrt{2}e}{2}\) \(\hspace{2cm}\) D、 \(0<k<\cfrac{1}{2e}\)
分析:函数的定义域为\((0,+\infty)\),由函数\(f(x)=kx^2-lnx\)有两个零点,
转化为方程\(kx^2=lnx\)有两个不同的实数根,
进而转化为\(k=\cfrac{lnx}{x^2}\)有两个不同的实数根,
再转化为函数\(y=k\)和函数\(y=g(x)=\cfrac{lnx}{x^2}\)的图像有两个不同的交点,
用导数研究函数\(g(x)\)的单调性,
\(g'(x)=\cfrac{\frac{1}{x}\cdot x^2-lnx\cdot 2x}{(x^2)^2}=\cfrac{1-2lnx}{x^3}\),
令\(1-2lnx>0\),得到\(0<x<\sqrt{e}\),令\(1-2lnx<0\),得到\(x>\sqrt{e}\),
即函数\(g(x)\)在区间\((0,\sqrt{e}]\)上单调递增,在\([\sqrt{e},+\infty)\)上单调递减,
故\(g(x)_{max}=g(\sqrt{e})=\cfrac{1}{2e}\),作出函数\(g(x)\)和函数\(y=k\)的简图,
由图像可得\(k\)的取值范围是\(k\in(0,\cfrac{1}{2e})\)。 \(_{\small{\Box}}\)
从上述的解法中(当然本题还有其他的解法,比如转化为方程\(kx^2=lnx\)有两个不同的实数根,不完全分离参数法),我们体会到,如果一个数学题目从数的角度直接来求解,结果很有可能要么不会求解,要么解不出,更或者没有思路;此时若换个角度思考,从形入手分析,将参数或含有参数的代数式(比如\(k+1\))和自变量分别放置在等号的两端,即\(k=f(x)\)的形式,然后数的问题就转化为形的问题了,从而直观快捷,思路简单明了。
一句话,从形的角度解题的前提就是施行分离参数的方法。
四、常见类型
- ①常规法分离参数:如\(\lambda f(x)=g(x)\Rightarrow \lambda=\cfrac{g(x)}{f(x)}\);
引例1、已知函数\(f(x)=kx^2-lnx\)有两个零点,求参数\(k\)的取值范围,用常规法分离参数,即得到方程\(k=\cfrac{lnx}{x^2}\)有两个不同实根,具体解法链接
引例2、已知函数\(f(x)=mlnx+x^2-mx\)在\((1,+∞)\)上单调递增,求m的取值范围【】.
【分析】由函数单调递增,转化为\(f'(x)≥0\)在\((1,+∞)\)上恒成立,然后分离参数得到\(m≤g(x)\),用均值不等式求新函数\(g(x)\)的最小值即可。
【解答】由题目可知,\(f'(x)≥0\)在\((1,+∞)\)上恒成立,且\(f'(x)\)不恒为零,
则有\(f'(x)=\cfrac{m}{x}+2x-m=\cfrac{2x^2-mx+m}{x}≥0\)在\((1,+∞)\)上恒成立,
即\(2x^2-mx+m≥0\)在\((1,+∞)\)上恒成立,常规法分离参数得到
m≤\(\cfrac{2x^2}{x-1}=\cfrac{2(x-1)^2+4x-2}{x-1}=\cfrac{2(x-1)^2+4(x-1)+2}{x-1}=2(x-1)+\cfrac{2}{x-1}+4\)
由于\(x>1\),故\(2(x-1)+\cfrac{2}{x-1}+4≥2\sqrt{4}+4=8\),当且仅当\(x=2\)时取到等号。
故\(m≤8\),当\(m=8\)时,函数不是常函数,也满足题意,故选D。
【点评】函数\(f(x)\)在区间\(D\) 上单调递增,则\(f'(x)≥0\)在\(D\)上恒成立,且\(f'(x)\)不恒为零;
函数\(f(x)\)在区间\(D\)上单调递减,则\(f'(x)≤0\)在\(D\)上恒成立,且\(f'(x)\)不恒为零;
此处要求\(f'(x)\)不恒为零,意思是要排除函数\(f(x)\)为常函数的情形。
- ②倒数法分离参数:如\(\lambda f(x)=g(x)\Rightarrow \cfrac{1}{\lambda}=\cfrac{f(x)}{g(x)}\);
比如,方程\(kx^2=e^x\),若常规法分离参数得到\(k=\cfrac{e^x}{x^2}\),就没有倒数法分离为\(\cfrac{1}{k}=\cfrac{x^2}{e^x}\)优越,
原因是函数\(y=\cfrac{e^x}{x^2}\)在\(x=0\)处有断点,而函数\(y=\cfrac{x^2}{e^x}\)在\(x\in R\)上是处处连续的,函数相对简单一些。
【提炼】已知函数\(f_1(x)=e^x\),\(f_2(x)=ax^2-2ax+b\),设\(a>0\),若对任意的\(m,n∈[0,1](m\neq n)\),\(|f_1(m)-f_1(n)|>|f_2(m)-f_2(n)|\)恒成立,求\(a\)的最大值。
【分析】利用函数的单调性去掉绝对值符号,构造新函数,可以将问题再次转化为恒成立,然后分离参数求解。
【解答】不妨设\(m>n\),则函数\(f_1(x)\)在区间\([0,1]\)上单调递增,故\(f_1(m)-f_1(n)>0\),
又\(f_2(x)=a(x-1)^2+b-a\),对称轴是\(x=1\),开口向上,
故函数\(f_2(x)\)在区间\([0,1]\)上单调递减,故\(f_2(m)-f_2(n)<0\),
这样对任意的\(m,n\in [0,1](m>n)\),\(|f_1(m)-f_1(n)|>|f_2(m)-f_2(n)|\)恒成立,
就可以转化为\(f_1(m)-f_1(n)>f_2(m)-f_2(n)\)恒成立,
即\(f_1(m)+f_2(m)>f_1(n)+f_2(n)\)恒成立,
令\(h(x)=f_1(x)+f_2(x)=e^x+ax^2-2ax+b\),
则到此的题意相当于已知\(m>n\)时,\(h(m)>h(n)\),
故函数\(h(x)\)在区间\([0,1]\)上单调递增,故\(h'(x)≥0\)在区间\([0,1]\)上恒成立;
即\(h'(x)=e^x+2ax-2a≥0\)在区间\([0,1]\)上恒成立;
即\(2a(1-x)≤e^x\)恒成立,这里我们使用倒数法分离参数得到,
\(\cfrac{1}{2a}≥\cfrac{1-x}{e^x}\)在区间\([0,1]\)上恒成立;
再令\(p(x)=\cfrac{1-x}{e^x}\),即需要求\(p(x)_{max}\),
\(p'(x)=\cfrac{-1×e^x-(1-x)e^x}{(e^x)^2}=\cfrac{x-2}{e^x}\),
容易看出,当\(x∈[0,1]\)时,\(p'(x)<0\)恒成立,故\(p(x)\)在区间\([0,1]\)上单调递减,
则\(p(x)_{max}=p(0)=1\),故\(\cfrac{1}{2a}≥1\),又\(a>0\),
故解得\(0<a≤1\)。故\(a_{max}=1\).
- ③讨论法分离参数:如\(\lambda f(x)\ge g(x)\);
比如,\(\lambda(x-1)\ge 2lnx\)对任意的\(x\in(0,1]\)恒成立,接下来分\(x=1\)和\(0<x<1\)分类讨论分离参数,具体见博文的后半部分的对应例题。
已知对任意\(x>0\)且\(x\neq 1\),不等式\(\cfrac{x-m}{lnx}>\sqrt{x}\)恒成立,求\(m\)的取值范围。
对任意\(x>0\)且\(x\neq 1\),不等式\(\cfrac{x-m}{g(x)}>\sqrt{x}\)恒成立等价于
当\(0<x<1\)时,\(m>x-\sqrt{x}lnx①\)恒成立,或者当\(x>1\)时,\(m<x-\sqrt{x}lnx②\)恒成立,
令\(h(x)=x-\sqrt{x}lnx(x>0,x\neq 1)\),\(h'(x)=\frac{2\sqrt{x}-lnx-2}{2\sqrt{x}}\)
令\(\phi(x)=2\sqrt{x}-lnx-2\),则\(\phi'(x)=\frac{\sqrt{x}-1}{x}\);
易知\(\phi(x)\)在\((0,1)\)上单调递减,在\((1,\infty)\)上单调递增,
所以\(\phi(x)>\phi(1)=0\),即得到\(h'(x)>0\),
因此由①式可得,\(m\ge h(1)=1\),由②式得\(m\leq h(1)=1\)
取两种结果的交集,所以\(m=1\)。
故不等式\(\cfrac{x-m}{g(x)}>\sqrt{x}\)恒成立的充要条件是\(m=1\)。
- ④整体法分离参数:如\(\lambda^2+2\lambda=f(x)\);
引例1、(2017湖南郴州二模)若命题“\(P:\exists x_0\in R,2^x_0-2+3a\leq a^2\)”是假命题,则实数\(a\)的取值范围是__________。
分析:由题目可知,命题“\(\neg P:\forall x\in R,2^x-2> a^2-3a\)”是真命题,即\(2^x-2> a^2-3a\)对\(\forall x\in R\)恒成立,
故\((2^x-2)_{min}>a^2-3a\),只需求\((2^x-2)_{min}\),而\(2^x-2>-2\),则有\(-2\ge a^2-3a\),即\(a^2-3a+2\leq 0\),
解得\(1\leq a\leq 2\),故实数\(a\)的取值范围是\([1,2]\)。
引例2、已知函数\(f(x)=-x^2+ax+b^2-b+1(a\in R,b\in R)\),对任意实数\(x\)都有\(f(1-x)=f(1+x)\)成立,若当\(x\in[-1,1]\)时,\(f(x)>0\)恒成立,则\(b\)的取值范围是_____________.
分析:先由\(f(1-x)=f(1+x)\)得到,二次函数的对称轴\(x=-\cfrac{a}{-2}=1\),解得\(a=2\),
故题目转化为\(-x^2+2x+b^2-b+1>0\)对任意\(x\in [-1,1]\)恒成立,
用整体法分离参数,得到\(b^2-b>x^2-2x-1\)对任意\(x\in[-1,1]\)恒成立。
令\(g(x)=x^2-2x-1,x\in[-1,1]\),需要求函数\(g(x)_{max}\);
\(g(x)=x^2-2x-1=(x-1)^2-2,x\in[-1,1]\),故\(g(x)\)在区间\([-1,1]\)上单调递减,则\(g(x)_{max}=g(-1)=2\),
故\(b^2-b>2\),解得\(b<-1\)或\(b>2\)。
- ⑤不完全分离参数法:如\(kx^2=lnx\);
比如,已知函数\(f(x)=kx^2-lnx\)有两个零点,求参数\(k\)的取值范围,用不完全分离参数法,即得到方程\(kx^2=lnx\)有两个不同实根,具体解法链接
五、局限之处
并不是所有的含参问题都适合分离参数,比如\(ax^2-a^2x+3<0\)在区间\([1,2]\)上恒成立,求\(a\)的范围,就不能用分离参数的方法,因为你没法将参数和自变量有效的分开,所以此时你可能需要借助二次函数的图像来考虑,而不是一味的使用分离参数法。
一般来说,以下的一些情形都不适合使用分离参数法:
- (1)不能将参数和自变量有效的分离开的;
\(\hspace{2em}\)比如,已知方程\(e^{-x}=ln(x+a)\)在\(x>0\)时有解,求参数的取值范围;
本题目就不能将参数和自变量有效的分离开的,此时我们就可以考虑用数形结合的思路求解。解法
- (2)如果参数的系数能取到正、负、零三种情形的,
引例,已知函数\(f(x)=x^2+ax-2a\ge 0\)对\(x\in [1,5]\)上恒成立,求参数\(a\)的取值范围。
如果用分离参数的方法,则先转化为\((x-2)a\ge -x^2,x\in [1,5]\)
接下来就转化成了三个恒成立的命题了,不管会不会做,从效率上都已经很不划算了。具体的解法已经隐藏。
- (3)分离参数后,得到的新函数变得复杂无比的;
\(\hspace{2em}\)比如函数\(f(x)=x^2-2x+a(e^{x-1}+e^{-x+1})\)有唯一的零点,分离参数后,得到\(a=\cfrac{-x^2+2x}{e^{x-1}+e^{-x+1}}=h(x)\),
你确信你能研究清楚函数\(h(x)\)的性质,并用手工做出函数的图像吗?省省吧,您呐。
- (4)分离参数后,得到的新函数中有\(sinx\)和\(cosx\)的,他们都有无穷阶导数,所以求导会一直做下去,一般不会使得函数式变得简单。
比如已知\(2a-1+sin2x+a(sinx-cosx)\ge 0\)在\(x\in [0,\cfrac{\pi}{2}]\)上恒成立,求参数\(a\)的取值范围。\([1,+\infty)\)
接下来的思路有:
思路一:分离参数,当分离为\(a\ge \cfrac{1-sin2x}{2+sinx-cosx}=g(x)\)时,你会发现,求函数\(g(x)_{max}\)很难,所以放弃;
思路二:链接,转化划归,令\(sinx-cosx=t=\sqrt{2}sin(x-\cfrac{\pi}{4})\),由于\(x\in [0,\cfrac{\pi}{2}]\),故\(t\in [-1,1]\)
由\((sinx-cosx)^2=t^2\),得到\(sin2x=1-t^2\),故不等式转化为\(at+1-t^2+2a-1\ge 0\),
即\(t^2-at-2a\leq 0\)在\(t\in [-1,1]\)上恒成立,令\(h(t)=t^2-at-2a,t\in [-1,1]\),
则\(h(t)\leq 0\)等价于\(\begin{cases}h(-1)=1+a-2a\leq 0\\h(1)=1-a-2a\leq 0 \end{cases}\),解得\(a\ge 1\),
- (5)看题目的选项确定方法
例12【2019届高三理科数学二轮用题】已知函数\(f(x)=mx-\cfrac{1-m}{x}+lnx\),要使得函数\(f(x)>0\)恒成立,则正实数\(m\)应该满足【】
法1:先考虑分离参数法,若能成功分离参数,那么得到的形式必然是\(m>g(x)\)或\(m<g(x)\)的形式,接下来需要求解函数\(g(x)\)的最值,其必然是数字化的,则结果和给定的选项的形式是不一致的,故这个思路做了大致分析后放弃;
法2:由函数\(f(x)>0\)恒成立,则需要求在\((0,+\infty)\)上的函数\(f(x)_{min}>0\)即可,故考虑用导数方法;
\(f'(x)=\cfrac{(x+1)[mx+(1-m)]}{x^2}\), 故函数在\(x=\cfrac{m-1}{m}\)处取到最小值,则要使得函数\(f(x)>0\)恒成立,只需要\(f(\cfrac{m-1}{m})>0\)即可,
对此化简整理得到,正实数\(m\)应该满足\(\cfrac{m-1}{m}\cdot e^{2m-1}>1\),故选\(C\)。
解后反思:本题目的解法有点漏洞,条件中应该使得\(m>1\),而不仅仅是\(m>0\),否则当\(0<m\leq 1\)时,函数\(f(x)\)在\((0,+\infty)\)上单调递增,其最小值的极限为\(f(0)\),题目就有了问题。
六、使用策略:
在具体的解题实践中,我们会发现绝大多数的题目可以用分离参数法解决,但是如果简单尝试后发现此法行不通,则需要及时调整解题思路和策略,比如做差构造新函数的思路。
已知函数\(f(x)=x^2-ax\),\(g(x)=mx+nlnx\),函数\(f(x)\)的图像在点\((1,f(1))\)处的切线的斜率为\(1\),函数\(g(x)\)在\(x=2\)处取到极小值\(2-2ln2\);
(1)求函数\(f(x)\)与\(g(x)\)的解析式;
分析:由题可知\(f'(x)=2x-a\),又\(f'(1)=2-a=1\),解得\(a=1\),即\(f(x)=x^2-x\);
又\(g'(x)=m+\cfrac{n}{x}\),由\(g'(2)=m+\cfrac{n}{2}=0\)及\(g(2)=2m+nln2=2-2ln2\),解得\(m=1,n=-2\),即\(g(x)=x-2lnx\);
(2)已知函数\(f(x)+g(x)\ge x^2-\lambda(x-1)\)对任意的\(x\in(0,1]\)恒成立,求实数\(\lambda\)的取值范围。
分析:由于\(f(x)+g(x)=x^2-2lnx\),则\(x^2-2lnx\ge x^2-\lambda(x-1)\)对任意的\(x\in(0,1]\)恒成立,可以有以下的思路:
法1:带参分析法,先令\(h(x)=\lambda(x-1)-2lnx\),则问题转化为\(h(x)\ge 0\)对任意的\(x\in(0,1]\)恒成立,
\(h'(x)=\lambda-\cfrac{2}{x}=\cfrac{\lambda x-2}{x}\)
当\(\lambda\leq 0\)时,\(h'(x)<0\),\(h(x)\)在区间\((0,1]\)上单调递减,
\(h(x)_{min}=h(1)=0\),即\(h(x)\ge 0\)恒成立;
当\(0<\lambda \leq 2\)时,\(h'(x)<0\),\(h(x)\)在区间\((0,1]\)上单调递减,
\(h(x)_{min}=h(1)=0\),即\(h(x)\ge 0\)恒成立;
当\(\lambda>2\)时,\(h'(x)<0\)在\((0,\cfrac{2}{\lambda})\)上恒成立,\(h'(x)>0\)在\((\cfrac{2}{\lambda},1)\)上恒成立,
即\(h(x)\)在\((0,\cfrac{2}{\lambda})\)单调递减,在\((\cfrac{2}{\lambda},1)\)上单调递增,
所以\(h(\cfrac{2}{\lambda})<h(1)=0\),故不满足题意,注意\(h(1)=0\),即函数\(h(x)\)恒过点\((1,0)\)
综上所述,实数\(\lambda\)的取值范围为\((-\infty,2]\)。
法2:讨论法分离参数,先转化为\(\lambda(x-1)\ge 2lnx\)对任意的\(x\in(0,1]\)恒成立,
当\(x=1\)时,\(\lambda\cdot 0\ge 2ln1=0\),\(\lambda\in R\);
当\(x\in (0,1)\)时,分离参数得到\(\lambda \leq \cfrac{2lnx}{x-1}\);令\(h(x)= \cfrac{2lnx}{x-1}\),
\(h'(x)=\cfrac{\cfrac{2}{x}(x-1)-2lnx}{(x-1)^2}=\cfrac{2(1-\cfrac{1}{x}-lnx)}{(x-1)^2}\);
令\(m(x)=1-\cfrac{1}{x}-lnx\),则\(m'(x)=\cfrac{1}{x^2}-\cfrac{1}{x}=\cfrac{1-x}{x^2}\),
则\(m'(x)>0\),则\(m(x)\)在\((0,1)\)上单调递增,故\(m(x)<m(1)=0\),故\(h'(x)=\cfrac{2m(x)}{(x-1)^2}<0\),
则\(h(x)\)在\((0,1)\)上单调递减,故\(h(x)>h(1)=2\)(由洛必达法则求得),即\(\lambda\leq 2\)
综上所述求交集得到,\(\lambda \in(-\infty,2]\)。
法3:不完全分离参数法,由\(\lambda(x-1)\ge 2lnx\)对任意的\(x\in(0,1]\)恒成立,
做函数\(y=\lambda(x-1)\)和函数\(y=2lnx\)的图像,示意图
设直线\(y=\lambda(x-1)\)与曲线\(y=2lnx\)相切于点\((x_0,y_0)\),则有\(\cfrac{2}{x_0}=\lambda\),\(y_0=2lnx_0\),\(y_0=\lambda(x_0-1)\),
求得切点坐标\((1,0)\),此时\(\lambda=2\),由\(\lambda\)的几何意义可知,\(\lambda\)的取值范围是\((-\infty,2]\)。
七、注意事项
分离参数法,一般常用于恒成立问题、能成立问题(有解),或无解问题,或已知函数零点个数命题中的参数取值范围问题,又或是从数的角度不好解决需要从形的角度入手的问题。
分离参数时,尽可能的使函数形式简单,这样求导数判断单调性就简单些,而参数形式复杂些或者简单些都无所谓,
比如方程\((2-a)x-2(1+lnx)+a=0\)在\((0,\cfrac{1}{2})\)上无解,求参数的最小值。
转化一:\(a=\cfrac{2+2lnx-2x}{1-x}=h(x)\);\(\hspace{4em}\) 转化二:\(\cfrac{2-a}{2}=\cfrac{lnx}{x-1}=h(x)\),
我们看到第二种转化就比第一种转化划归要好的多。
通过以上七个方面的粗浅探索,相信各位会对分离参数法有更深入的理解,使用会更加得心应手。