写这一系列的脑筋急转弯是因为当前网络上流传的脑筋急转弯都是无厘头式的题目,很少有一些成系列的智力题。为了本人未来的孩子的智商高于他的父辈,我决定从现在开始收集一些能够锻炼脑力的脑筋急转弯,虽然我还没有结婚……
一、海盗分金
题目:
有五个理性的海盗,A, B, C, D和E,找到了100个金币,需要想办法分配金币。
海盗们有严格的等级制度:A比B职位高,B比C高,C比D高,D比E高。
海盗世界的分配原则是:等级最高的海盗提出一种分配方案。所有的海盗投票决定是否接受分配,包括提议人。并且在票数相同的情况下,提议人有决定权。如果提议通过,那么海盗们按照提议分配金币。如果没有通过,那么提议人将被扔出船外,然后由下一个最高职位的海盗提出新的分配方案。
海盗们基于三个因素来做决定。首先,要能存活下来。其次,自己得到的利益最大化。最后,在所有其他条件相同的情况下,优先选择把别人扔出船外。
在知道上述全部信息的情况下,请问:海盗头子A怎么提方案可以在保证自己不死的前提下,让自己的利益最大化?
分析:
这个题目的变种很多,如海盗分钻石、海盗分宝石等,但题目的规则没变。还是这五个凶残可爱的海盗。
要想解析这个问题,就得倒序来思考。
1、假设前面的人都死了,只剩下D、E。 D的最优方案是: D:100 、E:0
2、所以在剩下 C、D、E三个人的时候,E只要想有金币得就不会让C死,所以C最好的方案是: C:99、D:0、E:1
3、精明的B在想到第2步的情况下,会争取D的支持,所以B的最优方案是:B:99、C:0、D:1、E:0
4、在第三步成立的前提下、C与E一无所得,所以A就可以寻求两人的支持。则A的最优方案是 A:98、B:0、C:1、D:0、E:1
这个问题的关键是海盗们三个原则,第一个元素确保他需要分摊利益,第二个元素确保他尽量保证自己的利益。同时第二个元素也是他揣度其他人想法的依据。最后一个元素确保抉择必须具有唯一性,不能有侥幸心理。每下一步都必须建立在上一步唯一的基础上。
在最后一个方案时,我也考虑过E的感受,在第2与第4步他都可以得到1个金币,他是不是就不会支持A了,答案是不会,因为中间还有一个第3步。
答案:
A:98、B:0、C:1、D:0、E:1
二、猴子分桃
题目:
五只猴子分桃。半夜,第一只猴子先起来,它把桃分成了相等的五堆,多出一只。于是,它吃掉了一个,拿走了一堆; 第二只猴子起来一看,只有四堆桃。于是把四堆合在一起,分成相等的五堆,又多出一个。于是,它也吃掉了一个,拿走了一堆;.....其他几只猴子也都是 这样分的。问:这堆桃至少有多少个?
分析:
这个问题与借羊分羊思路差不多。从外“借”四个桃。
第一个猴子,将桃分成五堆,多一个,加上“借”的四个桃,这样所有桃子都可以分成五堆了。第一个猴子拿走自己的一堆。并“还”走四个桃子。
第二个猴子,也将桃子分成五堆,多一个,那么他也“借”四个桃,桃子也正好分成五堆,他拿走自己的一堆,并还了桃子。
第三、四、五个猴子可如此,借桃分桃。
这样,借来的四个桃子相当于一直都在这堆桃子中没有离开。这样每次分桃之后,剩下的桃子分别是 (x+4)4/5,(x+4)(4/5)^2,(x+4)(4/5)^3,(x+4)(4/5)^4,(x+4)(4/5)^5。
这样问题就化解从(x+4)(4/5)^5,表达式结果必须为整数的问题。也就是x+4与5^5的最小公倍数。结果一算可得。
答案:
3121
三、飞机加油
题目:
已知:每个飞机只有一个油箱,飞机之间可以相互加油(注意是相互,没有加油机)一箱油可供一架飞机绕地球飞半圈,
问题:
为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?
假设所有飞机从同一机场起飞,而且必须安全返回机场,不允许中途降落,中间没有飞机场。
分析:
这个题目有个取巧的地方是需要几架飞机,而不是几架次飞机,所以同一架飞机可以重复飞行。可行方案是,出动三架飞机A,B,C,ABC同时起飞
C在1/8圈处,A将1/4油给B,将1/4油给C,这样B、C油箱满。A返回
C在1/4圈处,B将1/4油给C,C油箱满,B返回,C独自飞行
C在1/2圈处,B起飞
C在3/4圈处,B将1/4油给C,同时A起飞
C在7/8圈处,A将1/4油给B,将1/4油给C。A、B、C同时返航。
一共起飞5架次。耗油2圈半。
答案:
3