UVA10100:Longest Match(最长公共子序列)&&HDU1458Common Subsequence ( LCS)

题目链接:http://blog.csdn.net/u014361775/article/details/42873875

题目解析:

给定两行字符串序列,输出它们之间最大公共子单词的个数

对于给的两个序列X 和 Y,用i 和 j分别作为它们的前缀指针,f[i][j]表示序列X的前缀Xi 和 序列Y的前缀Yi 的最长公共子序列的长度,在这道题中,可把每一个单词当作一个字符来进行比较。

当 i | j 为0时 ,此 f[i][j] = 0;

当 i!=0 && j!=0 && Xi==Yi 时 f[i][j] = f[i-1][j-1] + 1;

当 i!=0 && j!=0 && Xi!=Yi 时 f[i][j] = max ( f[i-1][j] + f[i][j-1] );

以上是对最长公共子序列的求法。

我这题做了一下午,因为不会使用C++里面的函数,所以我用C语言写的,总是出现错误,之后错误没有了交上去却一直WA,后来一看题解才知道,字符串里面包括数字,坑啊,

改完后交时,UVA却崩了,等了两个多小时才交上,坎坷AC路。

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <math.h>
using namespace std;
char str[20100],st2[20100];
char a[1002][22],b[1002][22];
int f[1002][1002];

int main()
{
    int K=0,tt=0,l,t,t2,l2,ff;
    while(gets(str)!=NULL)
    {
        tt=0;
        t2=0;
        t=0;
        gets(st2);
        ff=0;
        l=strlen(str);
        l2=strlen(st2);
        for(int i=0; i<l; i++)
        {
            if((str[i]>='A'&&str[i]<='Z')||(str[i]>='a'&&str[i]<='z')||(str[i]>='0'&&str[i]<='9'))
            {
                a[tt][t++]=str[i];
                ff=1;
            }
            else
            {
                if(t)
                {
                    a[tt][t]='\0';
                    t=0;
                }
                if((i+1<l)&&((str[i+1]>='a'&&str[i+1]<='z')||(str[i+1]>='A'&&str[i+1]<='Z')||(str[i+1]>='0'&&str[i+1]<='9')))
                {
                    tt++;
                }
            }
        }
        if(((str[l-1]>='A'&&str[l-1]<='Z')||(str[l-1]>='a'&&str[l-1]<='z')||(str[l-1]>='0'&&str[l-1]<='9'))&&t>0)
        {
            a[tt][t]='\0';
        }
        printf("%2d. ",++K);
        if(l==0||l2==0)
        {
            printf("Blank!\n");
            continue;
        }
        if(ff==0)
        {
            printf("Length of longest match: 0\n");
            continue;
        }

        t=0;
        for(int i=0; i<l2; i++)
        {
            if((st2[i]>='A'&&st2[i]<='Z')||(st2[i]>='a'&&st2[i]<='z')||(st2[i]>='0'&&st2[i]<='9'))
            {
                b[t2][t++]=st2[i];
                ff=2;
            }
            else
            {
                if(t)
                {
                    b[t2][t]='\0';
                    t=0;
                }
                if((i+1<l2)&&((st2[i+1]>='0'&&st2[i+1]<='9')||(st2[i+1]>='a'&&st2[i+1]<='z')||(st2[i+1]>='A'&&st2[i+1]<='Z')))
                {
                    t2++;
                }
            }
        }
        if(((st2[l2-1]>='A'&&st2[l2-1]<='Z')||(st2[l2-1]>='a'&&st2[l2-1]<='z')||(st2[l2-1]>='0'&&str[l2-1]<='9'))&&t>0)
        {
            b[t2][t]='\0';
        }
        if(ff!=2)
        {
            printf("Length of longest match: 0\n");
            continue;
        }
        for(int i=0; i<=tt+1; i++)
        {
            f[i][0]=0;
        }
        for(int i=0; i<=t2+1; i++)
        {
            f[0][i]=0;
        }
        for(int i=1; i<=tt+1; i++)
        {
            for(int j=1; j<=t2+1; j++)
            {
                if(strcmp(a[i-1],b[j-1])==0)
                    f[i][j]=f[i-1][j-1]+1;
                else f[i][j]=max(f[i-1][j],f[i][j-1]);
            }
        }
        printf("Length of longest match: %d\n",f[tt+1][t2+1]);
    }
    return 0;
}

 HDU1458Common Subsequence:模版题

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <math.h>
#define N 400
#define inf 0x3f3f3f3f
typedef int ll;
using namespace std;
int dp[600][600],l1,l2;
int main()
{
    char a[600],b[600];
    while(scanf("%s%s",a,b)!=EOF)
    {
        l1=strlen(a);
        l2=strlen(b);
        for(int i=0; i<l1; i++)
        {
            dp[i][0]=0;
        }
        for(int i=0; i<l2; i++)
        {
            dp[0][i]=0;
        }
        for(int i=1; i<=l1; i++)
        {
            for(int j=1; j<=l2; j++)
            {
                if(a[i-1]==b[j-1])
                {
                    dp[i][j]=1+dp[i-1][j-1];
                }
                else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
            }
        }
        printf("%d\n",dp[l1][l2]);
    }
    return 0;
}

 非常棒的博客:地址:http://www.cnblogs.com/wb-DarkHorse/archive/2012/11/15/2772520.html

一:LCS解析

首先看下什么是子序列?定义就不写了,直接举例一目了然。如对于字符串:“student”,那么su,sud,sudt等都是它的子序列。它可以是连续的也可以不连续出现,如果是连续的出现,比如stud,一般称为子序列串,这里我们只讨论子序列。

什么是公共子序列?很简单,有两个字符串,如果包含共同的子序列,那么这个子序列就被称为公共子序列了。如“student”和“shade”的公共子序列就有“s”或者“sd”或者“sde”等。而其中最长的子序列就是所谓的最长公共子序列(LCS)。当然,最长公共子序列也许不止一个,比如:“ABCBDAB”和“BDCABA”,它们的LCS为“BCBA”,“BCAB”,“BDAB”。知道了这些概念以后就是如何求LCS的问题了。

通常的算法就是动态规划(DP)。假设现在有两个字符串序列:X={x1,x2,...xi...xm},Y={y1,y2,...yj...yn}。如果我们知道了X={x1,x2,...xi-1}和Y={y1,y2,...yj-1}的最大公共子序列L,那么接下来我们可以按递推的方法进行求解:

1)如果xi==yj,那么{L,xi(或yj)}就是新的LCS了,其长度也是len(L)+1。这个好理解,即序列{Xi,Yj}的最优解是由{Xi-1,Yj-1}求得的。

2)如果xiyj,那么可以转换为求两种情况下的LCS。

A: X={x1,x2,...xi}与Y={y1,y2,...yj-1}的LCS,假设为L1

B: X={x1,x2,...xi-1}与Y={y1,y2,...yj}的LCS,假设为L2

那么xiyj时的LCS=max{L1,L2},即取最大值。同样,实际上序列{Xi,Yj-1}和{Xi-1,Yj}都可以由{Xi-1,Yj-1}的最优解求得。

怎么样,是不是觉得这种方法很熟悉?当前问题的最优解总是包含了一个同样具有最优解的子问题,这就是典型的DP求解方法。好了,直接给出上面文字描述解法中求LCS长度的公式:

这里用一个二维数组存储LCS的长度信息,i,j分别表示两个字符串序列的下标值。这是求最大公共子序列长度的方法,如果要打印出最大公共子序列怎么办?我们还需要另外一个二维数组来保存求解过程中的路径信息,方便最后进行路径回溯,找到LCS。如果看着很含糊,我下面给出其实现过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值