题目大意:有$n(n\leqslant10^5)$个数,每两个数之间可以加入$+-\times$三种符号,$q(q\leqslant10^5)$次询问,每次询问修改一个数后,所有表达式可能的值的和
题解:发现任意一个表达式,把所有的$+-$取反,后面的值为相反数,相互抵消,而第一项的连乘,符号一定是正的。所以只有最开始连乘的一段是有用的,线段树区间修改即可
卡点:无
C++ Code:
#include <cstdio>
#include <iostream>
#define maxn 100010
const int mod = 1e9 + 7;
#define mul(x, y) static_cast<long long> (x) * (y) % mod
inline void reduce(int &x) { x += x >> 31 & mod; }
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = mul(base, base)) if (p & 1) res = mul(res, base);
return res;
}
inline int inv(int x) { return pw(x, mod - 2); }
int n, q;
int w[maxn], s[maxn];
namespace SgT {
int V[maxn << 2], tg[maxn << 2];
void build(int rt, int l, int r) {
tg[rt] = 1;
if (l == r) {
V[rt] = w[l];
return ;
}
const int mid = l + r >> 1;
build(rt << 1, l, mid), build(rt << 1 | 1, mid + 1, r);
reduce(V[rt] = V[rt << 1] + V[rt << 1 | 1] - mod);
}
inline void pushdown(int rt) {
int &__tg = tg[rt];
V[rt << 1] = mul(V[rt << 1], __tg);
tg[rt << 1] = mul(tg[rt << 1], __tg);
V[rt << 1 | 1] = mul(V[rt << 1 | 1], __tg);
tg[rt << 1 | 1] = mul(tg[rt << 1 | 1], __tg);
__tg = 1;
}
int L, R, v;
void __modify(int rt, int l, int r) {
if (L <= l && R >= r) {
V[rt] = mul(V[rt], v);
tg[rt] = mul(tg[rt], v);
return ;
}
if (tg[rt] != 1) pushdown(rt);
const int mid = l + r >> 1;
if (L <= mid) __modify(rt << 1, l, mid);
if (R > mid) __modify(rt << 1 | 1, mid + 1, r);
reduce(V[rt] = V[rt << 1] + V[rt << 1 | 1] - mod);
}
void modify(int __p, int __v) {
L = __p, R = n, v = __v;
__modify(1, 1, n);
}
}
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
std::cin >> n >> q;
w[0] = 1;
for (int i = 1; i <= n; ++i) {
std::cin >> s[i];
w[i] = mul(s[i], w[i - 1]);
}
for (int i = 1; i < n; ++i) reduce(w[i] = mul(w[i], pw(3, n - i - 1)) * 2 - mod);
SgT::build(1, 1, n);
while (q --> 0) {
static int x, y;
std::cin >> x >> y;
SgT::modify(x, mul(inv(s[x]), y));
s[x] = y;
std::cout << SgT::V[1] << '\n';
}
return 0;
}