BZOJ4902【CTSC2017】游戏

设当前已知条件$X_i=C_i$为事件$A_i$

答案为$\sum\limits_{i=1}^{n}P(X_i=1|A_1,...,A_k)$

设$A_t<X_i<=A_t+1$

$P(X_i=1|A_1,...,A_k)$

$=\frac{P(X_i=1,A_1,...,A_k)}{P(A_1,...,A_k)}$

$P(A_1,...,A_k)=P(A_1,...,A_{k-1})*P(A_k|A_1,...,A_{k-1})$

因为$A_k$事件只需要$A_{k-1}$

所以$P(A_k|A_1,...,A_k)=P(A_k|A_{k-1})$

所以i的贡献为$\frac{P(X_i=1|A_t)*P(A_{t+1}|X_i=1)}{P(A_{t+1}|A_t)}$

每段区间贡献为$\frac{\sum\limits_{i=A_t+1}^{A_{t+1}}P(X_i=1|A_t)*P(A_{t+1}|X_i=1)}{P(A_{t+1}|A_t)}$

线段树分别维护分子和分母 

每次操作相当于添加区间或者删除区间

转载于:https://www.cnblogs.com/xuruifan/p/7016935.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值