Netty 防止内存泄漏措施

1. 背景

1.1 直播平台内存泄漏问题

某直播平台,一些网红的直播间在业务高峰期,会有 10W+ 的粉丝接入,如果瞬间发生大量客户端连接掉线、或者一些客户端网络比较慢,发现基于 Netty 构建的服务端内存会飙升,发生内存泄漏(OOM),导致直播卡顿、或者客户端接收不到服务端推送的消息,用户体验受到很大影响。

1.2 问题分析

首先对 GC 数据进行分析,发现老年代已满,发生多次 Full GC,耗时达 3 分多,系统已经无法正常运行(示例):

图 1 直播高峰期服务端 GC 统计数据

Dump 内存堆栈进行分析,发现大量的发送任务堆积,导致内存溢出(示例):

图 2 直播高峰期服务端内存 Dump 文件分析

通过以上分析可以看出,在直播高峰期,服务端向上万客户端推送消息时,发生了发送队列积压,引起内存泄漏,最终导致服务端频繁 GC,无法正常处理业务。

1.3 解决策略

服务端在进行消息发送的时候做保护,具体策略如下:

  1. 根据可接入的最大用户数做客户端并发接入数流控,需要根据内存、CPU 处理能力,以及性能测试结果做综合评估。

  2. 设置消息发送的高低水位,针对消息的平均大小、客户端并发接入数、JVM 内存大小进行计算,得出一个合理的高水位取值。服务端在推送消息时,对 Channel 的状态进行判断,如果达到高水位之后,Channel 的状态会被 Netty 置为不可写,此时服务端不要继续发送消息,防止发送队列积压。

服务端基于上述策略优化了代码,内存泄漏问题得到解决。

1.4. 总结

尽管 Netty 框架本身做了大量的可靠性设计,但是对于具体的业务场景,仍然需要用户做针对特定领域和场景的可靠性设计,这样才能提升应用的可靠性。

除了消息发送积压导致的内存泄漏,Netty 还有其它常见的一些内存泄漏点,本文将针对这些可能导致内存泄漏的功能点进行分析和总结。

2. 消息收发防内存泄漏策略

2.1. 消息接收

2.1.1 消息读取

Netty 的消息读取并不存在消息队列,但是如果消息解码策略不当,则可能会发生内存泄漏,主要有如下几点:

1. 畸形码流攻击:如果客户端按照协议规范,将消息长度值故意伪造的非常大,可能会导致接收方内存溢出。

2. 代码 BUG:错误的将消息长度字段设置或者编码成一个非常大的值,可能会导致对方内存溢出。

3. 高并发场景:单个消息长度比较大,例如几十 M 的小视频,同时并发接入的客户端过多,会导致所有 Channel 持有的消息接收 ByteBuf 内存总和达到上限,发生 OOM。

避免内存泄漏的策略如下:

  1. 无论采用哪种解码器实现,都对消息的最大长度做限制,当超过限制之后,抛出解码失败异常,用户可以选择忽略当前已经读取的消息,或者直接关闭链接。

以 Netty 的 DelimiterBasedFrameDecoder 代码为例,创建 DelimiterBasedFrameDecoder 对象实例时,指定一个比较合理的消息最大长度限制,防止内存溢出:

/**
{1}
* Creates a new instance.
{1}
*
{1}
*@parammaxFrameLength the maximum length of the decoded frame.
{1}
* A {@linkTooLongFrameException} is thrown if
{1}
* the length of the frame exceeds this value.
{1}
*@paramstripDelimiter whether the decoded frame should strip out the
{1}
* delimiter or not
{1}
*@paramdelimiter the delimiter
{1}
*/

publicDelimiterBasedFrameDecoder(

intmaxFrameLength,booleanstripDelimiter, ByteBuf delimiter) {

this(maxFrameLength, stripDelimiter,true, delimiter);

}
复制代码
  1. 需要根据单个 Netty 服务端可以支持的最大客户端并发连接数、消息的最大长度限制以及当前 JVM 配置的最大内存进行计算,并结合业务场景,合理设置 maxFrameLength 的取值。
2.1.2 ChannelHandler 的并发执行

Netty 的 ChannelHandler 支持串行和异步并发执行两种策略,在将 ChannelHandler 加入到 ChannelPipeline 时,如果指定了 EventExecutorGroup,则 ChannelHandler 将由 EventExecutorGroup 中的 EventExecutor 异步执行。这样的好处是可以实现 Netty I/O 线程与业务 ChannelHandler 逻辑执行的分离,防止 ChannelHandler 中耗时业务逻辑的执行阻塞 I/O 线程。

ChannelHandler 异步执行的流程如下所示:

图 3 ChannelHandler 异步并发执行流程

如果业务 ChannelHandler 中执行的业务逻辑耗时较长,消息的读取速度又比较快,很容易发生消息在 EventExecutor 中积压的问题,如果创建 EventExecutor 时没有通过 io.netty.eventexecutor.maxPendingTasks 参数指定积压的最大消息个数,则默认取值为 0x7fffffff,长时间的积压将导致内存溢出,相关代码如下所示(异步执行 ChannelHandler,将消息封装成 Task 加入到 taskQueue 中):

public void execute(Runnable task) {

if(task==null) {

thrownewNullPointerException("task");

}

boolean inEventLoop =inEventLoop();

if(inEventLoop) {

addTask(task);

}else{

startThread();

addTask(task);

if(isShutdown()&&removeTask(task)) {

reject();

}

}
复制代码

解决对策:对 EventExecutor 中任务队列的容量做限制,可以通过 io.netty.eventexecutor.maxPendingTasks 参数做全局设置,也可以通过构造方法传参设置。结合 EventExecutorGroup 中 EventExecutor 的个数来计算 taskQueue 的个数,根据 taskQueue * N * 任务队列平均大小 * maxPendingTasks < 系数 K(0 < K < 1)* 总内存的公式来进行计算和评估。

2.2. 消息发送

2.2.1 如何防止发送队列积压

为了防止高并发场景下,由于对方处理慢导致自身消息积压,除了服务端做流控之外,客户端也需要做并发保护,防止自身发生消息积压。

利用 Netty 提供的高低水位机制,可以实现客户端更精准的流控,它的工作原理如下:

图 4 Netty 高水位接口说明

当发送队列待发送的字节数组达到高水位上限时,对应的 Channel 就变为不可写状态。由于高水位并不影响业务线程调用 write 方法并把消息加入到待发送队列中,因此,必须要在消息发送时对 Channel 的状态进行判断:当到达高水位时,Channel 的状态被设置为不可写,通过对 Channel 的可写状态进行判断来决定是否发送消息。

在消息发送时设置高低水位并对 Channel 状态进行判断,相关代码示例如下:

public void channelActive(finalChannelHandlerContextctx){

**ctx.channel().config().setWriteBufferHighWaterMark(10 \*1024*1024);**

loadRunner =newRunnable(){

@Override

public void run(){

try{

TimeUnit.SECONDS.sleep(30);

} catch (InterruptedException e) {

e.printStackTrace();

}

ByteBuf msg = null;

while(true) {

**if(ctx.channel().isWritable()) {**

msg =Unpooled.wrappedBuffer("Netty OOM Example".getBytes());

ctx.writeAndFlush(msg);

}else{

LOG.warning("The write queue is busy : "+ ctx.channel().unsafe().outboundBuffer().nioBufferSize());

}

}

}

};

newThread(loadRunner,"LoadRunner-Thread").start();

}
复制代码

对上述代码做验证,客户端代码中打印队列积压相关日志,说明基于高水位的流控机制生效,日志如下:

警告: The write queue is busy : 17

通过内存监控,发现内存占用平稳:

图 5 进行高低水位保护优化之后内存占用情况

在实际项目中,根据业务 QPS 规划、客户端处理性能、网络带宽、链路数、消息平均码流大小等综合因素计算并设置高水位(WriteBufferHighWaterMark)阈值,利用高水位做消息发送速率的流控,既可以保护自身,同时又能减轻服务端的压力,防止服务端被压挂。

2.2.2 其它可能导致发送队列积压的因素

需要指出的是,并非只有高并发场景才会触发消息积压,在一些异常场景下,尽管系统流量不大,但仍然可能会导致消息积压,可能的场景包括:

  1. 网络瓶颈,发送速率超过网络链接处理能力时,会导致发送队列积压。

  2. 对端读取速度小于己方发送速度,导致自身 TCP 发送缓冲区满,频繁发生 write 0 字节时,待发送消息会在 Netty 发送队列排队。

当出现大量排队时,很容易导致 Netty 的直接内存泄漏,示例如下:

图 6 消息积压导致内存泄漏相关堆栈

我们在设计系统时,需要根据业务的场景、所处的网络环境等因素进行综合设计,为潜在的各种故障做容错和保护,防止因为外部因素导致自身发生内存泄漏。

3. ByteBuf 的申请和释放策略

3.1 ByteBuf 申请和释放的理解误区

有一种说法认为 Netty 框架分配的 ByteBuf 框架会自动释放,业务不需要释放;业务创建的 ByteBuf 则需要自己释放,Netty 框架不会释放。

事实上,这种观点是错误的,即便 ByteBuf 是 Netty 创建的,如果使用不当仍然会发生内存泄漏。在实际项目中如何更好的管理 ByteBuf,下面我们分四种场景进行说明。

3.2 ByteBuf 的释放策略

3.2.1 基于内存池的请求 ByteBuf

这类 ByteBuf 主要包括 PooledDirectByteBuf 和 PooledHeapByteBuf,它由 Netty 的 NioEventLoop 线程在处理 Channel 的读操作时分配,需要在业务 ChannelInboundHandler 处理完请求消息之后释放(通常是解码之后),它的释放有 2 种策略:

  1. 策略 1:业务 ChannelInboundHandler 继承自 SimpleChannelInboundHandler,实现它的抽象方法 channelRead0(ChannelHandlerContext ctx, I msg),ByteBuf 的释放业务不用关心,由 SimpleChannelInboundHandler 负责释放,相关代码如下所示(SimpleChannelInboundHandler):
@Override

public void channelRead(ChannelHandlerContextctx, Objectmsg)throws Exception {

boolean release =true;

try{

if(acceptInboundMessage(msg)) {

I imsg = (I) msg;

channelRead0(ctx,imsg);

}else{

release =false;

ctx.fireChannelRead(msg);

}

} finally {

**if(autoRelease&&release) {**

**ReferenceCountUtil.release(msg);**

**}**

}

}
复制代码

如果当前业务 ChannelInboundHandler 需要执行,则调用完 channelRead0 之后执行 ReferenceCountUtil.release(msg) 释放当前请求消息。如果没有匹配上需要继续执行后续的 ChannelInboundHandler,则不释放当前请求消息,调用 ctx.fireChannelRead(msg) 驱动 ChannelPipeline 继续执行。

继承自 SimpleChannelInboundHandler,即便业务不释放请求 ByteBuf 对象,依然不会发生内存泄漏,相关示例代码如下所示:

publicclassRouterServerHandlerV2**extendsSimpleChannelInboundHandler<ByteBuf>**{

// 代码省略...

@Override

publicvoidchannelRead0(ChannelHandlerContext ctx, ByteBuf msg){

byte[] body =newbyte[msg.readableBytes()];

executorService.execute(()->

{

// 解析请求消息,做路由转发,代码省略...

// 转发成功,返回响应给客户端

ByteBuf respMsg = allocator.heapBuffer(body.length);

respMsg.writeBytes(body);// 作为示例,简化处理,将请求返回

ctx.writeAndFlush(respMsg);

});

}
复制代码

对上述代码做性能测试,发现内存占用平稳,无内存泄漏问题,验证了之前的分析结论。

  1. 策略 2:在业务 ChannelInboundHandler 中调用 ctx.fireChannelRead(msg) 方法,让请求消息继续向后执行,直到调用到 DefaultChannelPipeline 的内部类 TailContext,由它来负责释放请求消息,代码如下所示(TailContext):
protectedvoidonUnhandledInboundMessage(Object msg){

try{

logger.debug(

"Discarded inbound message {} that reached at the tail of the pipeline. "+

"Please check your pipeline configuration.", msg);

**}finally{**

**ReferenceCountUtil.release(msg);**

**}**

}
复制代码
3.2.2 基于非内存池的请求 ByteBuf

如果业务使用非内存池模式覆盖 Netty 默认的内存池模式创建请求 ByteBuf,例如通过如下代码修改内存申请策略为 Unpooled:

// 代码省略...

.childHandler(newChannelInitializer<SocketChannel>() {

@Override

publicvoidinitChannel(SocketChannel ch)throwsException{

ChannelPipeline p = ch.pipeline(); ch.config().setAllocator(UnpooledByteBufAllocator.DEFAULT);

p.addLast(newRouterServerHandler());

}

});

}
复制代码

也需要按照内存池的方式去释放内存。

3.2.3 基于内存池的响应 ByteBuf

只要调用了 writeAndFlush 或者 flush 方法,在消息发送完成之后都会由 Netty 框架进行内存释放,业务不需要主动释放内存。

它的工作原理如下:

调用 ctx.writeAndFlush(respMsg) 方法,当消息发送完成之后,Netty 框架会主动帮助应用来释放内存,内存的释放分为两种场景:

  1. 如果是堆内存(PooledHeapByteBuf),则将 HeapByteBuffer 转换成 DirectByteBuffer,并释放 PooledHeapByteBuf 到内存池,代码如下(AbstractNioChannel 类):


protected final ByteBufnewDirectBuffer(ByteBufbuf){

​ finalintreadableBytes = buf.readableBytes();

​if(readableBytes==0) {

​ **ReferenceCountUtil.safeRelease(buf);**

​ return Unpooled.EMPTY_BUFFER;

​ }

​ final ByteBufAllocator alloc = alloc();

​if(alloc.isDirectBufferPooled()) {

​ ByteBuf directBuf = alloc.directBuffer(readableBytes);

​ directBuf.writeBytes(buf,buf.readerIndex(), readableBytes);

​ **ReferenceCountUtil.safeRelease(buf);**

​ return directBuf;

​ } }

// 后续代码省略

}
复制代码

如果消息完整的被写到 SocketChannel 中,则释放 DirectByteBuffer,代码如下(ChannelOutboundBuffer)所示:


public boolean remove(){

​ Entry e = flushedEntry;

​if(e==null) {

​ clearNioBuffers();

​ returnfalse;

​ }

​ Object msg = e.msg;

​ ChannelPromise promise = e.promise;

​intsize = e.pendingSize;

​ removeEntry(e);

​if(!e.cancelled) {

​ **ReferenceCountUtil.safeRelease(msg);**

​ safeSuccess(promise);

​ decrementPendingOutboundBytes(size,false,true);

​ }

// 后续代码省略

}
复制代码

对 Netty 源码进行断点调试,验证上述分析:

断点 1:在响应消息发送处打印断点,获取到 PooledUnsafeHeapByteBuf 实例 ID 为 1506。

图 7 响应发送处断点调试

断点 2:在 HeapByteBuffer 转换成 DirectByteBuffer 处打断点,发现实例 ID 为 1506 的 PooledUnsafeHeapByteBuf 被释放。

图 8 响应消息释放处断点

断点 3:转换之后待发送的响应消息 PooledUnsafeDirectByteBuf 实例 ID 为 1527。

图 9 响应消息转换处断点

断点 4:响应消息发送完成之后,实例 ID 为 1527 的 PooledUnsafeDirectByteBuf 被释放到内存池。

图 10 转换之后的响应消息释放处断点
  1. 如果是 DirectByteBuffer,则不需要转换,当消息发送完成之后,由 ChannelOutboundBuffer 的 remove() 负责释放。
3.2.4 基于非内存池的响应 ByteBuf

无论是基于内存池还是非内存池分配的 ByteBuf,如果是堆内存,则将堆内存转换成堆外内存,然后释放 HeapByteBuffer,待消息发送完成之后,再释放转换后的 DirectByteBuf;如果是 DirectByteBuffer,则无需转换,待消息发送完成之后释放。因此对于需要发送的响应 ByteBuf,由业务创建,但是不需要业务来释放。

4. Netty 服务端高并发保护

4.1 高并发场景下的 OOM 问题

在 RPC 调用时,如果客户端并发连接数过多,服务端又没有针对并发连接数的流控机制,一旦服务端处理慢,就很容易发生批量超时和断连重连问题。

以 Netty HTTPS 服务端为例,典型的业务组网示例如下所示:

图 11 Netty HTTPS 组网图

客户端采用 HTTP 连接池的方式与服务端进行 RPC 调用,单个客户端连接池上限为 200,客户端部署了 30 个实例,而服务端只部署了 3 个实例。在业务高峰期,每个服务端需要处理 6000 个 HTTP 连接,当服务端时延增大之后,会导致客户端批量超时,超时之后客户端会关闭连接重新发起 connect 操作,在某个瞬间,几千个 HTTPS 连接同时发起 SSL 握手操作,由于服务端此时也处于高负荷运行状态,就会导致部分连接 SSL 握手失败或者超时,超时之后客户端会继续重连,进一步加重服务端的处理压力,最终导致服务端来不及释放客户端 close 的连接,引起 NioSocketChannel 大量积压,最终 OOM。

通过客户端的运行日志可以看到一些 SSL 握手发生了超时,示例如下:

图 12 SSL 握手超时日志

服务端并没有对客户端的连接数做限制,这会导致尽管 ESTABLISHED 状态的连接数并不会超过 6000 上限,但是由于一些 SSL 连接握手失败,再加上积压在服务端的连接并没有及时释放,最终引起了 NioSocketChannel 的大量积压。

4.2.Netty HTTS 并发连接数流控

在服务端增加对客户端并发连接数的控制,原理如下所示:

图 13 服务端 HTTS 连接数流控

基于 Netty 的 Pipeline 机制,可以对 SSL 握手成功、SSL 连接关闭做切面拦截(类似于 Spring 的 AOP 机制,但是没采用反射机制,性能更高),通过流控切面接口,对 HTTPS 连接做计数,根据计数器做流控,服务端的流控算法如下:

  1. 获取流控阈值。

  2. 从全局上下文中获取当前的并发连接数,与流控阈值对比,如果小于流控阈值,则对当前的计数器做原子自增,允许客户端连接接入。

  3. 如果等于或者大于流控阈值,则抛出流控异常给客户端。

  4. SSL 连接关闭时,获取上下文中的并发连接数,做原子自减。

在实现服务端流控时,需要注意如下几点:

  1. 流控的 ChannelHandler 声明为 @ChannelHandler.Sharable,这样全局创建一个流控实例,就可以在所有的 SSL 连接中共享。

  2. 通过 userEventTriggered 方法拦截 SslHandshakeCompletionEvent 和 SslCloseCompletionEvent 事件,在 SSL 握手成功和 SSL 连接关闭时更新流控计数器。

  3. 流控并不是单针对 ESTABLISHED 状态的 HTTP 连接,而是针对所有状态的连接,因为客户端关闭连接,并不意味着服务端也同时关闭了连接,只有 SslCloseCompletionEvent 事件触发时,服务端才真正的关闭了 NioSocketChannel,GC 才会回收连接关联的内存。

  4. 流控 ChannelHandler 会被多个 NioEventLoop 线程调用,因此对于相关的计数器更新等操作,要保证并发安全性,避免使用全局锁,可以通过原子类等提升性能。

5. 总结

5.1. 其它的防内存泄漏措施

5.1.1 NioEventLoop

执行它的 execute(Runnable task) 以及定时任务相关接口时,如果任务执行耗时过长、任务执行频度过高,可能会导致任务队列积压,进而引起 OOM:

图 14 NioEventLoop 定时任务执行接口

建议业务在使用时,对 NioEventLoop 队列的积压情况进行采集和告警。

5.1.2 客户端连接池

业务在初始化连接池时,如果采用每个客户端连接对应一个 EventLoopGroup 实例的方式,即每创建一个客户端连接,就会同时创建一个 NioEventLoop 线程来处理客户端连接以及后续的网络读写操作,采用的策略是典型的 1 个 TCP 连接对应一个 NIO 线程的模式。当系统的连接数很多、堆内存又不足时,就会发生内存泄漏或者线程创建失败异常。问题示意如下:

图 15 错误的客户端线程模型

优化策略:客户端创建连接池时,EventLoopGroup 可以重用,优化之后的连接池线程模型如下所示:

图 16 正确的客户端线程模型

5.2 内存泄漏问题定位

5.2.1 堆内存泄漏

通过 jmap -dump:format=b,file=xx pid 命令 Dump 内存堆栈,然后使用 MemoryAnalyzer 工具对内存占用进行分析,查找内存泄漏点,然后结合代码进行分析,定位内存泄漏的具体原因,示例如下所示:

图 17 通过 MemoryAnalyzer 工具分析内存堆栈
5.2.2 堆外内存泄漏

建议策略如下:

  1. 排查下业务代码,看使用堆外内存的地方是否存在忘记释放问题。

  2. 如果使用到了 Netty 的 TLS/SSL/openssl,建议到 Netty 社区查下 BUG 列表,看是否是 Netty 老版本已知的 BUG,此类 BUG 通过升级 Netty 版本可以解决。

  3. 如果上述两个步骤排查没有结果,则可以通过 google-perftools 工具协助进行堆外内存分析

欢迎学Java和大数据的朋友们加入java架构交流: 855835163
加群链接:jq.qq.com/?_wv=1027&a…​​​​​​​
群内提供免费的架构资料还有:Java工程化、高性能及分布式、高性能、深入浅出。高架构。性能调优、Spring,MyBatis,Netty源码分析和大数据等多个知识点高级进阶干货的免费直播讲解 可以进来一起学习交流哦


转载于:https://juejin.im/post/5c7f3d96f265da2dd94cd086

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值