python对象不可订阅_TypeError:“float”对象不可订阅(Python)

博主正在尝试使用贝塞尔曲线来模拟三维形状的后视镜,通过控制点生成曲线,并调整曲线比例以创建镜面效果。在编程实现过程中遇到了问题,代码试图将两条曲线之间的点进行连接以形成双射曲线,但在绘制时出现类型错误,提示float被误认为是列表。尽管检查了数据类型,但错误依然未找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我有一个项目,我想计算贝塞尔曲线,以近似三维形状的后视镜。基本上,我的想法是从一些控制点开始,这些控制点会给出第一条Bézier曲线B0的N个点,然后将这条曲线减少一个系数C(0<C<1),这样我就有了一条更小的曲线B1,它的重心与B0相同。然后,我将把两条曲线从2d移到3d,将两条曲线放置在预定的高度(B1为h,B0为0)。我已经对其进行了编码,如下所示:

f8b8107855504f442d246c9666c8f8f3.png

所以现在我想画一条曲线,把第一条曲线B0的每一个点连接到缩小的曲线B1,使整个东西看起来或多或少像一个后视镜。为此,我考虑到B0和B1上每个对应点之间的距离总是相同的,我可以使用一个双射f来连接这些点。现在这个双射曲线可以通过叠加m(m€| N*)中间曲线来近似(这些曲线不会出现在最后的绘图中),并用f获得递减系数

(旁注:我知道使用Poly3dCollection会给我一个更好的结果,但我已经试过了,它没有起作用,显然是因为副作用我无法理解)

但这一部分代码中有一个错误:B= [B0]

B += [bezier_reduit(pts, N, d*(m - phi)/m) for phi in F if (phi != 0) if (phi != d)]

B += B1

for j in range(N+1):

ax.plot([B[i][j][0] for i in range(m+1)], [B[i][j][1] for j in range(m+1)], F)

我将点表示为两个浮点的列表[x,y],因此B0和B1等Bézier曲线是浮点列表的列表,而B是Bézier曲线的列表,所以它是一个浮动列表列表的列表。F是给出每个点的z坐标的浮动列表。这段代码应该绘制两条连续曲线之间的每一条直线,这样最终它看起来或多或少像是连接B0和B1的函数f。在

但当我试图执行这个大函数时(这里只展示了它的一部分,直接指向要点),它说:

^{pr2}$

所以我在网上查了一下,我发现很明显,当一个float被误认为是一个列表时,就会发生这种情况,例如,当x[0]和x一起输入float时,因为Python无法到达float的“第一个元素”。但是我检查了我的代码很多次,我不知道我在哪里做了这样的事情,所以我真的不知道错误是从哪里来的。在

编辑:我使用print(类型(x))检查了B、B[0]、B[0][0]和B[0][0][0](这样我可以确定这些值确实存在),分别得到:

这符合我的预期,所以很不幸我仍然不知道错误来自哪里。在

<think>好的,我现在需要帮助用户解决他们遇到的TypeError问题。用户在使用wrap_model_hub函数创建HfModel实例时,传入了config参数,但报错说缺少必需的参数'config'。我需要仔细分析代码和错误信息,找出问题所在。 首先,用户提供的代码中,wrap_model_hub函数动态生成了一个HfModel类,该类继承自用户传入的model_cls和PyTorchModelHubMixin。HfModel的__init__方法接受一个config字典,并通过super().__init__(**config)调用父类的构造函数。然后保存config到实例属性。 用户传入的config参数包含多个键值对,比如source_size、source_cam_dist等。但报错信息指出在初始化HfModel时缺少config参数,这说明在实例化时没有正确传递config参数,或者HfModel的构造函数没有被正确调用。 接下来,我需要检查用户是如何创建HfModel实例的。根据用户之前提供的示例代码,正确的做法应该是通过WrappedModel = wrap_model_hub(MyModel)生成包装后的类,然后使用model = WrappedModel(config=config)来实例化。如果用户在实例化时没有传递config参数,或者错误地传递了参数,就会导致这个错误。 另外,还需要检查用户传入的model_cls(即原始模型类)的构造函数参数是否与config中的键匹配。例如,如果原始模型类的__init__方法需要参数source_size,而config中没有这个键,或者键名不匹配,也会导致TypeError。但根据用户提供的config内容,他们似乎已经包含了所有必要的参数,所以可能问题出在实例化时的参数传递方式。 可能的错误情况包括:用户在实例化HfModel时没有传递config参数,或者错误地使用了位置参数而不是关键字参数。例如,如果用户写成model = WrappedModel(config)而不是model = WrappedModel(config=config),会导致参数被错误地解析,因为HfModel的构造函数明确要求config作为关键字参数。 此外,还需要考虑PyTorchModelHubMixin是否有特殊的初始化需求。如果PyTorchModelHubMixin的__init__方法需要额外的参数,而HfModel的构造函数没有正确处理,也可能导致问题。不过根据Hugging Face的常见用法,PyTorchModelHubMixin通常不需要额外的参数,因此问题更可能出现在用户代码的参数传递上。 总结可能的原因: 1. 实例化HfModel时没有传递config参数,或者传递方式不正确。 2. 原始模型类的构造函数需要其他参数,而config中没有提供。 3. 在多重继承中,super().__init__的调用顺序或参数传递有误。 接下来,我需要根据用户的错误信息进一步分析。用户的错误提示明确指出HfModel的__init__缺少config参数,这说明在实例化时没有传入config参数。这可能是因为用户在实例化时没有按照要求使用关键字参数,或者完全忘记了传递config。 例如,如果用户错误地写成model = WrappedModel(),而没有提供config参数,就会导致这个错误。或者,如果用户将config作为位置参数传递,但HfModel的构造函数需要显式的关键字参数。 此外,还需要检查wrap_model_hub生成的HfModel类是否正确。例如,HfModel的__init__方法是否确实接受config作为参数,并且在调用super().__init__(**config)时正确解包参数。 可能的解决方案包括: 1. 确保在实例化HfModel时显式传递config参数,并且使用关键字参数。 2. 检查原始模型类的构造函数参数是否与config中的键完全匹配。 3. 确保在多重继承中,父类的__init__方法被正确调用,没有参数冲突。 例如,如果原始模型类的构造函数除了config中的参数外,还有其他必需的参数,那么即使config正确,也会导致错误。但根据用户提供的config内容,似乎这些参数已经覆盖了原始模型需要的参数,因此问题更可能出在实例化时的参数传递方式。 另外,用户提供的错误信息中的报错位置是HfModel.__init__(),这说明问题发生在HfModel的初始化过程中,而不是父类。因此,可能是HfModel的构造函数没有正确接收config参数,或者用户在实例化时未正确传递。 最后,需要建议用户检查实例化代码,确保正确传递config参数,并验证config中的键是否与原始模型类的参数完全一致。如果仍然有问题,可能需要进一步查看原始模型类的定义,确认其构造函数的参数列表。</think>--- ### **错误原因分析** 根据你的描述和代码,问题出在 **`HfModel` 的实例化步骤中未正确传递 `config` 参数**。具体原因如下: #### **1. 错误代码示例** 假设你按以下方式调用: ```python # 错误写法:未传递 config 参数 model = HfModel() # 或 model = WrappedModel() ``` 或 ```python # 错误写法:未使用关键字参数 config= model = WrappedModel({"source_size": 336, ...}) # 位置参数传递 ``` #### **2. 错误根源** - `HfModel` 的构造函数明确要求 `config` 必须作为关键字参数传入(`def __init__(self, config: dict)`)。 - 如果未传递 `config` 参数,或未使用 `config=` 关键字,会触发 `TypeError: __init__() missing 1 required positional argument: 'config'`。 --- ### **修复步骤** #### **1. 确保正确传递 `config` 参数** ```python # 正确写法:显式使用 config= 关键字 model = WrappedModel(config=config_dict) ``` #### **2. 检查原始模型的构造函数参数** 你的 `config` 包含以下参数: ```python config = { "source_size": 336, "source_cam_dist": 2.0, "render_size": 288, "render_views": 160, "render_fps": 40, "frame_size": 2, "mesh_size": 384, "mesh_thres": 3.0 } ``` **关键验证点:** - **原始模型类(被 `wrap_model_hub` 包装的类)的 `__init__` 方法必须接受与 `config` 键完全一致的参数**。例如: ```python class OriginalModel(nn.Module): def __init__(self, source_size: int, source_cam_dist: float, ...): super().__init__() # 模型定义 ``` - ✅ 如果 `OriginalModel` 的构造函数参数名与 `config` 的键名完全匹配(如 `source_size`, `source_cam_dist` 等),则正常。 - ❌ 如果 `OriginalModel` 的构造函数参数名与 `config` 的键名不一致(如参数名为 `src_size` 但 `config` 键为 `source_size`),会触发 `TypeError`。 #### **3. 完整修复示例** 假设原始模型定义如下: ```python class OriginalModel(nn.Module): def __init__( self, source_size: int, source_cam_dist: float, render_size: int, render_views: int, render_fps: int, frame_size: int, mesh_size: int, mesh_thres: float ): super().__init__() # 模型的具体实现 ``` 修复后的调用代码: ```python # 包装原始模型 WrappedModel = wrap_model_hub(OriginalModel) # 准备 config 字典(键名必须与 OriginalModel 构造函数参数一致) config = { "source_size": 336, "source_cam_dist": 2.0, "render_size": 288, "render_views": 160, "render_fps": 40, "frame_size": 2, "mesh_size": 384, "mesh_thres": 3.0 } # 正确创建实例 model = WrappedModel(config=config) # 注意 config= 关键字 ``` --- ### **验证是否修复** 通过检查模型结构和配置确认: ```python print(model) # 应输出 OriginalModel 的层结构 print(model.config) # 应输出完整的 config 字典 ``` --- ### **常见问题补充** #### **问题 1:`config` 键名与模型参数名不匹配** - **错误现象**:`TypeError: __init__() got an unexpected keyword argument 'xxx'` - **修复方法**:确保 `config` 的键名与原始模型的构造函数参数名严格一致。 #### **问题 2:混合继承导致 `super()` 调用冲突** - **罕见情况**:如果 `model_cls` 和 `PyTorchModelHubMixin` 的 `__init__` 方法有参数冲突,需手动调整继承顺序或重写 `__init__`。 - **解决方案**(示例): ```python class HfModel(model_cls, PyTorchModelHubMixin): def __init__(self, config: dict): # 显式调用 model_cls 的构造函数 model_cls.__init__(self, **config) # 显式调用 PyTorchModelHubMixin 的构造函数(如果它有参数) PyTorchModelHubMixin.__init__(self) self.config = config ``` --- ### **总结** - **核心错误**:未正确传递 `config` 参数或键名不匹配。 - **修复关键**: 1. 使用 `config=` 关键字参数实例化 `HfModel`。 2. 确保 `config` 字典的键名与原始模型构造函数参数名完全一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值