分式不等式习题

例1解关于\(x\)的分式不等式\(\cfrac{1}{x}\ge 1\)

【错解】:去分母得到\(x\leq 1\),这是错误的,原因是分母可能取到正负两种可能。

【法1】:分类讨论去分母,由于\(x\neq 0\),故原不等式等价于以下的两个不等式组:

\(\begin{cases}&x>0\\&1\ge x\end{cases}\)\(\begin{cases}&x<0\\&1\leq x\end{cases}\),解得\(0<x \leq 1\)

【法2】:穿针引线法,移项得到\(\cfrac{1-x}{x}\ge 0\),再变形得到\(\cfrac{x-1}{x}\leq 0\),解得\(0<x \leq 1\)

【法3】:转化法,由商的符号法则得到,\(\begin{cases}&x(1-x)\ge 0\\&x\neq 0\end{cases}\),解得\(0<x \leq 1\)

解后反思:受解方程的思维定势的影响,学生最容易想到法1,但是却往往注意不到不等式的性质而直接去分母出错;法2的解法很快速,但是对学生的要求比较高;法3比较慢。

例2常见分式不等式,用穿根法求解;

\(\cfrac{3x^2-2x-1}{x^2-1}\ge 0\),化简为\(\cfrac{3x+1}{x+1}\ge 0\)\(x-1\neq 0\),故解集为\((-\infty,-1)\cup[-\cfrac{1}{3},1)\cup(1,+\infty)\)

\(\cfrac{2x^2+3x+1}{x-2}>0\),解集为\(x\in(-1,-\cfrac{1}{2})\cup(2,+\infty)\)

\(\cfrac{e^x(x+1)(2x-1)}{x^2}>0\),解集为\(x\in(-\infty,-1)\cup(\cfrac{1}{2},+\infty)\)

转载于:https://www.cnblogs.com/wanghai0666/p/7364526.html

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值