例1解关于\(x\)的分式不等式\(\cfrac{1}{x}\ge 1\)。
【错解】:去分母得到\(x\leq 1\),这是错误的,原因是分母可能取到正负两种可能。
【法1】:分类讨论去分母,由于\(x\neq 0\),故原不等式等价于以下的两个不等式组:
\(\begin{cases}&x>0\\&1\ge x\end{cases}\)或\(\begin{cases}&x<0\\&1\leq x\end{cases}\),解得\(0<x \leq 1\)。
【法2】:穿针引线法,移项得到\(\cfrac{1-x}{x}\ge 0\),再变形得到\(\cfrac{x-1}{x}\leq 0\),解得\(0<x \leq 1\)。
【法3】:转化法,由商的符号法则得到,\(\begin{cases}&x(1-x)\ge 0\\&x\neq 0\end{cases}\),解得\(0<x \leq 1\)。
解后反思:受解方程的思维定势的影响,学生最容易想到法1,但是却往往注意不到不等式的性质而直接去分母出错;法2的解法很快速,但是对学生的要求比较高;法3比较慢。
例2常见分式不等式,用穿根法求解;
如\(\cfrac{3x^2-2x-1}{x^2-1}\ge 0\),化简为\(\cfrac{3x+1}{x+1}\ge 0\)且\(x-1\neq 0\),故解集为\((-\infty,-1)\cup[-\cfrac{1}{3},1)\cup(1,+\infty)\)
如\(\cfrac{2x^2+3x+1}{x-2}>0\),解集为\(x\in(-1,-\cfrac{1}{2})\cup(2,+\infty)\);
\(\cfrac{e^x(x+1)(2x-1)}{x^2}>0\),解集为\(x\in(-\infty,-1)\cup(\cfrac{1}{2},+\infty)\);