算法学习(1)----扩展欧几里得算法

摘自百度百科

欧几里德算法


欧几里德算法又称 辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
gcd函数就是用来求(a,b)的 最大公约数的。
gcd函数的基本性质:
gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)

公式表述

gcd(a,b)=gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个 公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公约数
假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证

C++语言实现

1
2
3
int  gcd( int  a, int  b){
     return  b?gcd(b,a%b):a;
}

扩展算法

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在无数组整
数对 x,y ,使得 gcd(a,b)=ax+by。

c++语言实现

1
2
3
4
5
6
7
8
9
int  gcd( int  a, int  b, int  &x, int  &y){
     if  (b==0){
         x=1,y=0;
         return  a;
     }
     int  q=gcd(b,a%b,y,x);
     y-=a/b*x;
     return  q;
}
 
求解 x,y的方法的理解
设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,a>b>0 时
设 ax1+ by1= gcd(a,b);
bx2+ (a mod b)y2= gcd(b,a mod b);
根据朴素的 欧几里德原理有 gcd(a,b) = gcd(b,a mod b);
则:ax1+ by1= bx2+ (a mod b)y2;
即:ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2;
也就是ax1+ by1 == ay2+ b(x2- [a / b] *y2);
根据恒等定理得:x1=y2; y1=x2- [a / b] *y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里德算法
扩展欧几里德算法是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据 数论中的相关定理)。扩展 欧几里德常用在求解模 线性方程及方程组中。下面是一个使用C++的实现:
1
2
3
4
5
6
7
8
9
10
11
int  exGcd( int  a, int  b, int  &x, int  &y)
{
     if (b==0)
     {
         x=1;y=0;
         return  a;
     }
     int  r=exGcd(b,a%b,x,y);
     int  t=x;x=y;y=t-a/b*y;
     return  r;
}
把这个实现和Gcd的递归实现相比,发现多了下面的x,y 赋值过程,这就是扩展欧几里德算法的精髓。
可以这样思考:
对于a'=b,b'=a%b 而言,我们求得 x, y使得 a'x+b'y=Gcd(a',b')
由于b'=a%b=a-a/b*b (注:这里的/是 程序设计语言中的 除法)
那么可以得到:
a'x+b'y=Gcd(a',b') ===>
bx+(a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>
ay +b(x - a / b*y) = Gcd(a, b)
因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)
使用扩展欧几里德算法解决不定方程的办法
对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。
有种较为不严谨的方法证明,不过至少弥补了一点空白,望某些数论大师补充修改:
由于我们知道,存在一组x与y使得a*x+b*y=gcd(a,b)。
将等式两边同时乘以整数k,即a*x*k+b*y*k=gcd(a,b)*k。如果c mod gcd(a,b)=f,则0<=f<gcd(a,b)。
那么可以令c=gcd(a,b)*k+f。这样一来,就有a*x*k+b*y*k+f=c。
若f  0,由于f<gcd(a,b)<=a<=b(假设a<=b),所以不存在f=a*m(m为整数),也就不存在a*(x*k+m)+b*y*k=c。也就是说,不存在a*x+b*y=c的整数解x与y。
所以f=0,即只有当c mod gcd(a,b)=0时,a*x+b*y=c有正整数解。得证。
上面已经列出找一个 整数解的方法,在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,p * a+q * b = Gcd(a, b)的其他整数解满足:
p = p0 + b/Gcd(a, b) * t
q = q0 - a/Gcd(a, b) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可,但是所得解并不是该方程的所有解,找其所有解的方法如下:
在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,可以
得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),p * a+q * b = c的其他整数解满足:
p = p1 + b/Gcd(a, b) * t
q = q1 - a/Gcd(a, b) * t(其中t为任意 整数)
p 、q就是p * a+q * b = c的所有整数解。
编程时 exgcd 更多用于求解“中国剩余定理”相关知识 举个例子比如n除以5余2 除以13余3 那么n最小是多少,所有的n满足什么条件?
n(min)=42
n=42+k*65
欧几里德算法的扩展
扩展欧几里德算法不但能计算(a,b)的 最大公约数,而且能计算a模b及b模a的 乘法逆元,用C语言描述如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
int  gcd( int  a, int  b, int  &ar, int  &br)
{
     int  x1,x2,x3;
     int  y1,y2,y3;
     int  t1,t2,t3;
     if(0==a)//有一个数为0,就不存在乘法逆元
     {
         ar=0;br=0;
         return b;
     }
     if(0==b)
     {
         ar=0;br=0;
         return a;
     }
     x1=1;x2=0;x3=a;
     y1=0;y2=1;y3=b;
     int  nk;
     for(t3=x3%y3;t3!=0;t3=x3%y3)
     {
         k=x3/y3;
         t2=x2-k*y2;t1=x1-k*y1;
         x1=y1;x2=y2;x3=y3;
         y1=t1;y2=t2;y3=t3;
     }
     if(y3==1)//有乘法逆元
     {
         ar=(y2+b)%b;//对求出来负的乘法逆元进行处理,使之在模b的完全剩余集里
         br=(y1+a)%a;//原来这里是错的
         return 1;
     }
     else//公约数不为1,无乘法逆元
     {
         ar=0;
         br=0;
         return y3;
     }
}
扩展欧几里德算法对于 最大公约数的计算和普通欧几里德算法是一致的。计算 乘法逆元则显得很难明白。我想了半个小时才想出证明他的方法。
首先重复操作整除中的一个论断:
如果gcd(a,b)=d,则存在m,n,使得d = ma + nb,称呼这种关系为a、b组合整数d,m,n称为组合系数。当d=1时,有 ma + nb = 1 ,此时可以看出m是a模b的乘法逆元,n是b模a的乘法逆元。
为了证明上面的结论,我们把上述计算中xi、yi看成ti的迭代初始值,考察一 组数(t1,t2,t3),用归纳法证明:当通过扩展欧几里德算法计算后,每一行都满足a×t1 + b×t2 = t3
第一行:1 × a + 0 × b = a成立
第二行:0 × a + 1 × b = b成立
假设前k行都成立,考察第k+1行
对于k-1行和k行有
t1(k-1) t2(k-1) t3(k-1)
t1(k) t2(k) t3(k)
分别满足:
t1(k-1) × a + t2(k-1) × b = t3(k-1)
t1(k) × a + t2(k) × b = t3(k)
根据扩展欧几里德算法,假设t3(k-1) = j t3(k) + r
则:
t3(k+1) = r
t2(k+1) = t2(k-1) - j × t2(k)
t1(k+1) = t1(k-1) - j × t1(k)
t1(k+1) × a + t2(k+1) × b
=t1(k-1) × a - j × t1(k) × a +
t2(k-1) × b - j × t2(k) × b
= t3(k-1) - j t3(k) = r
= t3(k+1)
得证
因此,当最终t3 迭代计算到1时,有t1× a + t2 × b = 1,显然,t1是a模b的 乘法逆元,t2是b模a的乘法逆元。

转载于:https://www.cnblogs.com/dongling/p/5716410.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值