强化学习基础:蒙特卡罗和时序差分

这篇文章承接文章强化学习基础:基本概念和动态规划,介绍另外两种解决强化学习问题的方法

求解方法:Monte Carlo

  • 问题一(左图):estimate the state-value function $v_{\pi}$ corresponding to a policy $\pi$
    • First-visit MC estimates  $v_{\pi}(s)$ as the average of the returns following only first visits to $s$ (ignores returns that are associated to later visits)
    • Every-visit MC estimates  $v_{\pi}(s)$ as the average of the returns following all visits to $s$
  • 问题二(右图):estimate the action-value function $q_{\pi}$ corresponding to a policy $\pi$
    • First-visit MC estimates  $q_{\pi}(s,a)$ as the average of the returns following only first visits to $s,a$
    • Every-visit MC estimates  $q_{\pi}(s,a)$ as the average of the returns following all visits to $s,a$

  • 问题三(左图):get the optimal policy $\pi_*$
    • relationship between the mean and individual return: $\bar{Q}_k=\frac{\sum_{i=1}^kG_i}{k}=\bar{Q}_{k-1}+\frac{1}{k}(G_k-\bar{Q}_{k-1})$
    • $\epsilon$-greedy:  Exploration vs Exploitation
      • with probability $1-\epsilon$, select the greedy action ${\pi}(s)=\arg \max _{a \in \mathcal{A}(s)} Q(s, a)$ (Exploitation)
      • with probability $\epsilon$, select an action (uniformly) at random ${\pi}(a|s)=\frac{1}{|\mathcal{A}(s)|}$ (Exploration)  
  • 问题四(右图):modify the algorithm to put more weights to the most recent returns 

 

求解方法:Temporal Difference

Monte Carlo (MC) prediction methods must wait until the end of an episode to update the value function estimate, temporal-difference (TD) methods update the value function after every time step.

  • 问题一(左图):estimate the state-value function $v_{\pi}$ (the estimation of $q_{\pi}$ is similar)
  • 问题二(右图):get the optimal action value function $q_*$
    • On policy: the agent interact with the environment by following the same policy $\pi$ that it seeks to evaluate (or improve)
    • Sarsa(0) is an on-policy method

  • 问题三:modified algorithm to get the optimal action value function $q_*$
    • Off poliy: the agent interact with the environment by following a policy $b$ that is different from the policy $\pi$ that it seeks to evaluate (or improve)
    • Sarsamax(i.e., Q-learning) is an off-policy method

  • 问题四:another modified algorithm to get the optimal action value function $q_*$
    • Expected Sarsa is an on-policy method
    • $\pi(a|S_{t+1})$ is derived from $Q$ (e.g., $\epsilon$-greedy)



转载于:https://www.cnblogs.com/sunwq06/p/11084512.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值