python求圆柱体的体积_漫谈超球体的体积公式

本文探讨了高维度空间中球体的体积公式,从超立方体、超锥体到超球体,详细介绍了n维球体积的推导过程,涉及三角函数积分和 Gamma 函数的应用。通过Python计算和可视化,揭示了维度对体积的影响,展示了不同维度球体体积的变化趋势。
摘要由CSDN通过智能技术生成

a1f1f2f04d5422875c6d62a678584f24.png

  现实生活中,我们只要掌握圆的周长和面积公式,了解球的表面积和体积公式就够用了,没有什么可以深究的。本篇将带你走进高维度球的表面积和体积公式[1]
  我们生活在三维空间,对更高维度的空间难以构想。笛卡尔说:我思故我在。借助一点点想象力,我们来推导一下n维球的体积公式。

  以下都假设球的半径为r,表面积为S,体积为V。球心为坐标原点O,具有n个维度的点X坐标为

,球内任意一点X,都满足距离条件

  对于向量空间,距离测度分多种:
1范式 曼哈顿距离(Manhattan distance)  


2范式 欧几里德距离(Euclidean distance) 

n范式                    

范式 切比雪夫距离( Chebyshev distance) 

超立方体

  无穷大范式最简单,我们先作讨论。所有维度上的坐标的绝对值不超过r,这样的形状是一个边长为2r的超立方体(hyper,不是super)是一个泛化的概念,用以延伸到所有的维度上。

  超立方体的各个轴都是正交的,所以体积

上的积分等于在各个轴上的长度的乘积,即

  每个轴都有左右两个超平面限定,于是n维体有2n个面。在向高维扩展时,n维球的“体”就会沦落为n+1维球的“面”。我们有

,然后连同上面的式子,我们得到
。可以对着正方形和正方体检查一下,是符合的。对于一维情况,“体”就是线长
无疑。但是根据公式,“面”
,与半径无关,没有量纲。有点奇怪,相当于零维空间点的左右两个面?

超锥体

  在曼哈顿距离下,

构成什么形状呢?可以从低维度入手。一维情况下是一条直线,二维情况下是一个围住
正四边形,或者倾斜的正方体。三维情况下是 正八面体,与各轴的交点是
。同理,n维情况下的交点是
构成
超多面体,每个轴上有左右两个交点,每个轴上选一个交点,张成一个 超平面。仅考虑正半轴,则形状分别是三角形,三角锥,四角锥,……超角锥。超角锥的体积公式是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值