lintcode:买卖股票的最佳时机 III

买卖股票的最佳时机 III

假设你有一个数组,它的第i个元素是一支给定的股票在第i天的价格。设计一个算法来找到最大的利润。你最多可以完成两笔交易

样例

给出一个样例数组 [4,4,6,1,1,4,2,5], 返回 6

解题

尝试参考买卖股票的最佳时机 II  提交运行发现错误,每次找到连续的递增子数组记录前后的差值,找到两个最大的。如下程序,其实有问题,最大的差值,可能跨两个子数组的。

如:{1,2,4,2,5,7,2,4,9,0}

三个递增数组:{1,2,4}、{2,5,7}、{2,4,9},起始数组的差是:3、5、7,最大两个和是;5+7= 12

然后对前两数组,第二个数组的起始数大于第一个的起始数,而第二个的结束数大于第一个的结束数,通过递增子数组还大于2个,所有有个更大的其实数组差是:7-1 = 6.

    public int maxProfit(int[] A) {
        // write your code here
        if(A == null || A.length == 0)
            return 0;
        if(A.length == 1)
            return 0;
        int sum=0;
        int i = 0;
        int j = 0;
        int subSum1 = Integer.MIN_VALUE;
        int subSum2 = Integer.MIN_VALUE;
        int tmpSum = 0;
        while(i < A.length && j < A.length){
            tmpSum = 0;
            while(j<A.length-1 && A[j] <= A[j+1])
                j++;
            tmpSum += A[j] - A[i];
            if(subSum1 > subSum2){ // subSum1 是较小者
                int tmp = subSum1;
                subSum1 = subSum2;
                subSum2 = tmp;
            }
            // 当 tmpSum 比较小 subSum1  大 的时候更新sumSum1
            if(tmpSum > subSum1){
                subSum1 = tmpSum;
            }
            i = j + 1;// 下一个位置从新开始
            j = j + 1;
        }
        if( subSum2 == Integer.MIN_VALUE)
            return subSum1;
        return subSum1 + subSum2;
    }
View Code

 

题目标签中有个前后遍历,就想到定义两个数组

left[i] 表示0 - i 并且i是卖出的最大收益

right[i] 表示i - A.length-1 并且i 是买入的最大收益

最后求两个数组的最大和,但是这里时间复杂度是O(N^2)可以进一步的降低的

class Solution {
    /**
     * @param prices: Given an integer array
     * @return: Maximum profit
     */
    public int maxProfit(int[] A) {
        // write your code here
        if(A == null || A.length == 0)
            return 0;
        if(A.length == 1)
            return 0;
        int sum=0;
        int[] left = new int[A.length];
        int[] right = new int[A.length];
        int min = A[0];
        //  left[i] 表示在 0 - i 中能够 卖出的最大收益,当是 0的时候表示不买也不卖
        for(int i =1;i< A.length;i++){
            if(min<= A[i]){
                left[i] = A[i] - min;
            }else
                min = A[i];
        }
        int max = A[A.length - 1];
        // right[i] 表示在 i - A.length-1 中能够卖出的最大收益
        for( int i = A.length -2;i>=0;i--){
            if(max >= A[i]){
                right[i] = max - A[i];
            }else{
                max = A[i];
            }
        }
        max = Integer.MIN_VALUE;
        for(int i = 0;i< A.length;i++){
            for(int j = i;j<A.length;j++)
                max = Math.max(max,left[i] + right[j]);
        }
        return max;
    }
};

 

如果我们更改定义的两个数组

left[i] 表示0 - i 这段数组的最大收益

right[i] 表示i - A.length-1 这段数组的最大收益

在求两个数组的和时候只需要线性的时间复杂度

class Solution {
    /**
     * @param prices: Given an integer array
     * @return: Maximum profit
     */
    public int maxProfit(int[] A) {
        // write your code here
        if(A == null || A.length == 0)
            return 0;
        if(A.length == 1)
            return 0;
        int sum=0;
        int[] left = new int[A.length];
        int[] right = new int[A.length];
        int min = A[0];
        //  left[i] 表示在 0 - i 中能够 卖出的最大收益,当是 0的时候表示不买也不卖
        for(int i =1;i< A.length;i++){
            if(min<= A[i]){
                left[i] = Math.max(left[i-1], A[i] - min);
            }else{
                left[i] = left[i-1];
                min = A[i];
            }
                
        }
        int max = A[A.length - 1];
        // right[i] 表示在 i - A.length-1 中能够卖出的最大收益
        for( int i = A.length -2;i>=0;i--){
            if(max >= A[i]){
                right[i] = Math.max(right[i+1],max - A[i]);
            }else{
                right[i] = right[i+1];
                max = A[i];
            }
        }
        max = Integer.MIN_VALUE;
        for(int i = 0;i< A.length;i++){
            max = Math.max(max,left[i] + right[i]);
        }
        return max;
    }
};

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值