三角不等式的解法【初级和中阶辅导】

本文详细介绍了三角不等式的解法,强调了借助图像和三角函数线来解决问题的重要性。通过实例解析了如何解三角不等式,如(2sinx>1),并探讨了不同解法的适用情况,包括周期选择和整体思想的应用。同时,文章提供了转化不等式为模型的方法,如(2cos(2x+cfrac{pi}{3})<1)的解题思路。
摘要由CSDN通过智能技术生成

前言

廓清认知:由于三角不等式属于超越不等式,故已经不能和解\(x^2+3x+2>0\)这样的代数不等式的解法同日而语,此时必须借助图像来解决;能借助的图像有三角函数的图像,还可以借助三角函数线来解决,以下用例题加以说明。

一、必备技能

  • 函数图像的解读能力

  • 作三角函数\(y=sinx\)\(y=cosx\)的图像、作正弦线、余弦线的能力

  • 用不等式表达单位圆中区域的能力

  • 用韦恩图求交集的能力

  • 转化划归能力

二、模型应用

例1解三角不等式: \(2sinx>1\).

法1:三角函数图像法,将不等式变形为\(sinx>\cfrac{1}{2}\),在同一个坐标系中做出函数\(y=sinx\)\(y=\cfrac{1}{2}\)

由于函数\(y=sinx\)有周期性,故需要不需要画出其完整的图像,只需要做出一个周期上的图像就可以了,

992978-20180406161633427-636016503.png

如右图所示,我们选取的周期是\([0,2\pi]\),从图上可以看出,

\(sinx>\cfrac{1}{2}\)时,在一个周期内的不等式的解是\(\cfrac{\pi}{6}< x <\cfrac{5\pi}{6}\)

而题目中\(x\in R\),故我们还需要做出拓展,那么怎么拓展呢?

函数\(y=\cfrac{1}{2}\),自然是向左右两端无限延伸的,

函数\(y=sinx\)也是向左右两端按照周期\(T=2\pi\)的整数倍无限延伸的,

故满足题意的不等式的解集绝不仅仅是上述解出的解集,

应该还有,就是把上述的解集也向左右两端按照周期的整数倍延伸,

\(k \cdot 2\pi+\cfrac{\pi}{6}< x < k \cdot 2\pi+\cfrac{5\pi}{6}(k\in Z)\)

故所求的不等式的所有解集应该是

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值