概率论07 联合分布

本文介绍了概率论中多个随机变量的联合分布概念,包括离散和连续随机变量的联合分布、边缘概率、条件分布以及独立随机变量。通过实例详细解释了如何计算联合概率、边缘概率,并探讨了随机变量的独立性。
摘要由CSDN通过智能技术生成

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

 

我之前一直专注于单一的随机变量及其概率分布。我们自然的会想将以前的结论推广到多个随机变量。联合分布(joint distribution)描述了多个随机变量的概率分布,是对单一随机变量的自然拓展。联合分布的多个随机变量都定义在同一个样本空间中。

对于联合分布来说,最核心的依然是概率测度这一概念。 

 

离散随机变量的联合分布

我们先从离散的情况出发,了解多个随机变量并存的含义。

之前说,一个随机变量是从样本空间到实数的映射。然而,所谓的映射是人为创造的。从一个样本空间,可以同时产生多个映射。比如,我们的实验是连续三次投硬币,样本空间为

$$\Omega = \{hhh, hht, hth, thh, htt, tht, tth, ttt\}$$

h为正面,t为反面。在同一样本空间上,我们可以定义多个随机变量,比如:

  • [$X$]: 投掷为正面的总数,可以取值0,1,2,3
  • [$Y$]: 最后一次出现负面的总数,可以取值0,1
  • [$Z$]: 将正面记为10,负面记为5,第一次与第三次取值的差,可以有5, -5, 0

这三个随机变量可以看作一个有三个分量的矢量。所以定义在同一样本空间的多随机变量,是一个从样本空间到矢量的映射。 

(从这个角度上说,单一随机变量是一个从样本空间到一个有一个分量的矢量的映射)

 

如果样本空间[$\Omega$]中每个结果出现的概率相等。而样本空间中共有8个结果,那么个每个结果的出现的概率都是1/8。据此,我们可以计算联合概率,比如

$$P(X=0, Y=1) = P(\{ttt\}) = 1/8$$

$$P(X=1, Y=1) = P(\{htt, tht\}) = 2/8$$

对于[$X = x, Y = y$],我们寻找样本空间中满足这两个取值的所有元素。这些元素构成一个样本空间的子集,该子集的概率就是[$P(X = x, Y = y)$]的联合概率。[$p(x, y) = P(X = x, Y = y)$]称为联合概率质量函数(joint PMF, joint probability mass function)。联合概率可以看做两个事件同时发生时的概率,事件A为[$X=x$],事件B为[$Y=y$],即[$P(A \cap B)$]。

找到所有可能取值组合的概率,就找到了这两个随机变量的联合分布:

[$X$] [$Y$] [$P(X,Y)$] 对应子集
0 0 0 [$\Phi$]
1 0 1/8
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值